Câu hỏi:

31/10/2024 263 Lưu

Cho tam giác đều \(ABC\) có đường tròn nội tiếp \(\left( {O;r} \right)\), cắt bỏ phần hình tròn và cho hình phẳng thu được quay quanh \(AO\).

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

 

ĐÚNG

SAI

Thể tích khối tròn xoay thu được là \(\pi {r^3}\).

   

Thể tích khối tròn xoay thu được bằng thể tích khối cầu có cùng bán kính với phần bị cắt bỏ.

   

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án

 

ĐÚNG

SAI

Thể tích khối tròn xoay thu được là \(\pi {r^3}\).

¡

¤

Thể tích khối tròn xoay thu được bằng thể tích khối cầu có cùng bán kính với phần bị cắt bỏ.

¡

¤

Phương pháp giải

- Gọi \(H\) là chân đường cao \(AH\) của tam giác \(ABC\)

- Khi quay tam giác \(ABC\) quanh trục \(AO\) ta được hình nón có thể tích là: \({V_N}\), có đáy là đường tròn đường kính \(BC\)

Lời giải

Cho tam giác đều \(ABC\) có đường tròn nội tiếp \(\left( {O;r} \right)\), cắt bỏ phần hình tròn và cho hình phẳng thu được quay quanh \(AO\). Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? 	ĐÚNG	SAI Thể tích khối tròn xoay thu được là \(\pi {r^3}\).		 Thể tích khối tròn xoay thu được bằng thể tích khối cầu có cùng bán kính với phần bị cắt bỏ.		 (ảnh 1)

Gọi \(H\) là chân đường cao \(AH\) của tam giác \(ABC\)

Vì tam giác \(ABC\) đều nên ta có: \(AH = 3OH = 3r\), \(AH = BC\frac{{\sqrt 3 }}{2} \Leftrightarrow BC = \frac{2}{{\sqrt 3 }}AH = .r2\sqrt 3 \)

Khi quay tam giác \(ABC\) quanh trục \(AO\) ta được hình nón có thể tích là: \({V_N}\), có đáy là đường tròn đường kính \(BC\) khi đó: \({S_N} = \pi H{C^2} = \pi {r^2}3\), chiều cao của hình nón là: \(AH = 3r\), khi đó thể tích hình nón là: \({V_N} = \frac{1}{3}AH.{S_N} = \frac{1}{3}3r.\pi {r^2}3 = 3\pi {r^3}\) (đvtt)

Thể tích khối cầu khi quay hình tròn \(\left( {O;r} \right)\) quanh trục \(AO\) là: \({V_C} = \frac{4}{3}\pi {r^3}\)

Vậy thể tích \(V\) của khối tròn xoay thu được khi quay tam giác \(ABC\) đã cắt bỏ phần hình tròn quanh trục \(AO\) là: \(V = {V_N} - {V_C} = 3\pi {r^3} - \frac{4}{3}\pi {r^3} = \frac{5}{3}\pi {r^3}\)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\vec a + \vec b = \left( {3; - 3; - 3} \right)\) 
B. \(\vec a \bot \vec b\) 
C. \(\left| {\vec b} \right| = \sqrt 3 \) 
D. \(\vec a\) và \(\vec b\) cùng phương

Lời giải

Phương pháp giải

Xét tính đúng, sai cho từng đáp án, dựa vào các công thức cộng véc tơ, độ dài véc tơ, các tính chất hai véc tơ cùng phương, hai véc tơ vuông góc.

Tọa độ véc tơ 

Lời giải

\(\vec a + \vec b = \left( {2 + 1; - 2 - 1; - 4 + 1} \right) = \left( {3; - 3; - 3} \right)\) nên A đúng.

\(\vec a.\vec b = 2.1 + \left( { - 2} \right).\left( { - 1} \right) + \left( { - 4} \right).1 = 0\) nên \(\vec a \bot \vec b\) hay B đúng.

\(\left| {\vec b} \right| = \sqrt {{1^2} + {{( - 1)}^2} + {1^2}}  = \sqrt 3 \) nên C đúng.

Vì \(\frac{2}{1} = \frac{{ - 2}}{{ - 1}} \ne \frac{{ - 4}}{1}\) nên \(\vec a\) và \(\vec b\) không cùng phương hay D sai.

Lời giải

Đáp án: "2"

Phương pháp giải

- Tính đạo hàm và khảo sát hàm \(y = 2{x^3} - 3{x^2}\)

- Số nghiệm của phương trình đã cho bằng số giao điểm của hai đồ thị: \(\left\{ {\begin{array}{*{20}{l}}{\left( C \right):y = 2{x^3} - 3{x^2}}\\{d:y = 2m + 1}\end{array}} \right.\)

Lời giải

Xét hàm số: \(y = 2{x^3} - 3{x^2} \Rightarrow y' = 6{x^2} - 6x \Rightarrow y' = 0 \Leftrightarrow x = 0 \vee x = 1\).

Bảng biến thiên:

Gọi \(S\) là tập tất cả các giá trị thực của tham số \(m\) để phương trình \(2{x^3} - 3{x^2} = 2m + 1\) có đúng hai nghiệm phân biệt. Số phần tử của \(S\) là _______ (ảnh 1)

Số nghiệm của phương trình đã cho bằng số giao điểm của hai đồ thị: \(\left\{ {\begin{array}{*{20}{l}}{\left( C \right):y = 2{x^3} - 3{x^2}}\\{d \cdot y = 2m + 1}\end{array}} \right.\)

Nhìn vào bảng biến thiên ta thấy: Phương trình đã cho có hai nghiệm phân biệt

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2m + 1 =  - 1}\\{2m + 1 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m =  - 1}\\{m =  - \frac{1}{2}}\end{array} \Rightarrow S = \left\{ { - 1; - \frac{1}{2}} \right\}} \right.} \right.\).

 

Câu 3

A. Cụ đã tới cái tuổi được hoàn toàn nhàn rỗi để dưỡng lấy tính tình.

B. Mình chỉ là một anh nhà nho sống vào giữa buổi Tây Tàu nhố nhăng, chỉ là một kẻ chọn nhầm thế kỷ với hai bàn tay không có lợi khí mới, thì riêng lo cho thân thế, lo cho sự mất còn của mình cũng chưa xong.

C. Đủ thời giờ mà săn sóc đến hoa mới là việc khó.

D. Gây được lên một khoảnh vườn, khuân hoa cỏ các nơi về mà trồng, phó mặc chúng ở giữa trời, đày chúng ra mưa nắng với thờ ơ, chúng trổ bông không biết đến, chúng tàn lá cũng không hay thì chơi hoa làm gì cho thêm tội.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. C20H14O4                 
B. C20H16O5                  
C. C18H14O4                          
D. C18H16O5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP