Câu hỏi:

19/08/2025 359 Lưu

Cho hàm đa thức bậc ba \[y = f(x)\] có đồ thị như hình vẽ sau:

Cho hàm đa thức bậc ba y = f(x) có đồ thị như hình vẽ sau: Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?  (ảnh 1)

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

 

ĐÚNG

SAI

Với \({x_1};{x_2} \in \left( {a;b} \right)\) thỏa mãn \({x_1} < {x_2} < 0\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\)

   

Với \({x_0} \in \left( {a;0} \right)\) thì \(f'\left( {{x_0}} \right) < 0\)

   

Với \({x_0} \in \left( {0;b} \right)\) thì \(f\left( {{x_0}} \right) < f\left( a \right)\)

   

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án

 

ĐÚNG

SAI

Với \({x_1};{x_2} \in \left( {a;b} \right)\) thỏa mãn \({x_1} < {x_2} < 0\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\)

  X

Với \({x_0} \in \left( {a;0} \right)\) thì \(f'\left( {{x_0}} \right) < 0\)

X  

Với \({x_0} \in \left( {0;b} \right)\) thì \(f\left( {{x_0}} \right) < f\left( a \right)\)

X  

Phương pháp giải

Cho hàm số \(y = f\left( x \right)\) xác định trên \(K\) (\(K\) có thể là một khoảng, đoạn hoặc nửa khoảng)

- Hàm số \(y = f\left( x \right)\) được gọi là đồng biến trên \(K\) nếu \(\forall {x_1},{x_2} \in K:{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\)

- Hàm số \(y = f\left( x \right)\) được gọi là nghịch biến trên \(K\) nếu \(\forall {x_1},{x_2} \in K:{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\).

Lời giải

+) Với \({x_1};{x_2} \in \left( {a;b} \right)\) thỏa mãn \({x_1} < {x_2} < 0\) thì \({x_1};{x_2} \in \left( {a;0} \right)\)

Mà hàm số nghịch biến trên \(\left( {a;0} \right)\) nên \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

=> Mệnh đề 1 sai

+) Hàm số nghịch biến trên \(\left( {a;0} \right)\) nên với \({x_0} \in \left( {a;0} \right)\) thì \(f'\left( {{x_0}} \right) < 0\)

=> Mệnh đề 2 đúng

+) Quan sát đồ thị ta thấy khi \(x \in \left[ {a;b} \right]\) thì \(\mathop {{\rm{max}}}\limits_{\left[ {a;b} \right]} f\left( x \right) = f\left( a \right)\)

Khi đó với \({x_0} \in \left( {0;b} \right)\) thì \(f\left( {{x_0}} \right) < f\left( a \right)\)

=> Mệnh đề 3 đúng

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\vec a + \vec b = \left( {3; - 3; - 3} \right)\) 
B. \(\vec a \bot \vec b\) 
C. \(\left| {\vec b} \right| = \sqrt 3 \) 
D. \(\vec a\) và \(\vec b\) cùng phương

Lời giải

Phương pháp giải

Xét tính đúng, sai cho từng đáp án, dựa vào các công thức cộng véc tơ, độ dài véc tơ, các tính chất hai véc tơ cùng phương, hai véc tơ vuông góc.

Tọa độ véc tơ 

Lời giải

\(\vec a + \vec b = \left( {2 + 1; - 2 - 1; - 4 + 1} \right) = \left( {3; - 3; - 3} \right)\) nên A đúng.

\(\vec a.\vec b = 2.1 + \left( { - 2} \right).\left( { - 1} \right) + \left( { - 4} \right).1 = 0\) nên \(\vec a \bot \vec b\) hay B đúng.

\(\left| {\vec b} \right| = \sqrt {{1^2} + {{( - 1)}^2} + {1^2}}  = \sqrt 3 \) nên C đúng.

Vì \(\frac{2}{1} = \frac{{ - 2}}{{ - 1}} \ne \frac{{ - 4}}{1}\) nên \(\vec a\) và \(\vec b\) không cùng phương hay D sai.

Lời giải

Đáp án: "2"

Phương pháp giải

- Tính đạo hàm và khảo sát hàm \(y = 2{x^3} - 3{x^2}\)

- Số nghiệm của phương trình đã cho bằng số giao điểm của hai đồ thị: \(\left\{ {\begin{array}{*{20}{l}}{\left( C \right):y = 2{x^3} - 3{x^2}}\\{d:y = 2m + 1}\end{array}} \right.\)

Lời giải

Xét hàm số: \(y = 2{x^3} - 3{x^2} \Rightarrow y' = 6{x^2} - 6x \Rightarrow y' = 0 \Leftrightarrow x = 0 \vee x = 1\).

Bảng biến thiên:

Gọi \(S\) là tập tất cả các giá trị thực của tham số \(m\) để phương trình \(2{x^3} - 3{x^2} = 2m + 1\) có đúng hai nghiệm phân biệt. Số phần tử của \(S\) là _______ (ảnh 1)

Số nghiệm của phương trình đã cho bằng số giao điểm của hai đồ thị: \(\left\{ {\begin{array}{*{20}{l}}{\left( C \right):y = 2{x^3} - 3{x^2}}\\{d \cdot y = 2m + 1}\end{array}} \right.\)

Nhìn vào bảng biến thiên ta thấy: Phương trình đã cho có hai nghiệm phân biệt

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2m + 1 =  - 1}\\{2m + 1 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m =  - 1}\\{m =  - \frac{1}{2}}\end{array} \Rightarrow S = \left\{ { - 1; - \frac{1}{2}} \right\}} \right.} \right.\).

 

Câu 3

A. Cụ đã tới cái tuổi được hoàn toàn nhàn rỗi để dưỡng lấy tính tình.

B. Mình chỉ là một anh nhà nho sống vào giữa buổi Tây Tàu nhố nhăng, chỉ là một kẻ chọn nhầm thế kỷ với hai bàn tay không có lợi khí mới, thì riêng lo cho thân thế, lo cho sự mất còn của mình cũng chưa xong.

C. Đủ thời giờ mà săn sóc đến hoa mới là việc khó.

D. Gây được lên một khoảnh vườn, khuân hoa cỏ các nơi về mà trồng, phó mặc chúng ở giữa trời, đày chúng ra mưa nắng với thờ ơ, chúng trổ bông không biết đến, chúng tàn lá cũng không hay thì chơi hoa làm gì cho thêm tội.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. C20H14O4                 
B. C20H16O5                  
C. C18H14O4                          
D. C18H16O5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP