Câu hỏi:
31/10/2024 197Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp giải
+ Gọi \(M\left( {x;y;z} \right)\) và \(A',B'\) lần lượt là hình chiếu vuông góc của \(A,B\) lên \({\rm{mp}}\left( P \right)\).
+ Chứng minh \(M\) luôn thuộc một đường tròn cố định.
+ Gọi \(E\) là hình chiếu của \(I\) lên \(\left( P \right)\), tìm \(E\).
+ Gọi \(H\) là hình chiếu vuông góc của \(O\) lên \({\rm{mp}}\left( P \right)\), tìm \(H\).
+ vì \(O{M^2} = O{H^2} + H{M^2}\) nên \(OM_{{\rm{max}}}^2 \Leftrightarrow HM_{{\rm{max}}}^2\), tính \(O{M^2}\) max.
Phương pháp giải các bài toán về mặt cầu và mặt phẳng
Lời giải
Nhận thấy đường thẳng \(AB\) không vuông góc với \({\rm{mp}}\left( P \right)\) và
\(\left( { - 1 + 0 - 0 + 2} \right).\left( {1 + 0 - 1 + 2} \right) > 0\) nên \(A,B\) nằm cùng phía so với \(\left( P \right)\).
Gọi \(M\left( {x;y;z} \right)\) và \(A',B'\) lần lượt là hình chiếu vuông góc của \(A,B\) lên \({\rm{mp}}\left( P \right)\).
Vì các đường thẳng \(MA,MB\) cùng tạo với \({\rm{mp}}\left( P \right)\) các góc bằng nhau nên \(\widehat {AMA'} = \widehat {BMB'}\)
\( \Rightarrow {\rm{\Delta }}AMA'\,\,{\rm{\Delta }}BMB' \Rightarrow \frac{{MA}}{{MB}} = \frac{{AA'}}{{BB'}} = \frac{{d\left( {A,\left( P \right)} \right)}}{{d\left( {B,\left( P \right)} \right)}} = \frac{{\left| { - 1 + 2} \right|}}{{\left| {1 - 1 + 2} \right|}} = \frac{1}{2}\)
\( \Leftrightarrow MB = 2MA \Leftrightarrow M{B^2} = 4M{A^2} \Leftrightarrow {(x - 1)^2} + {y^2} + {(z - 1)^2}\)
\( = 4\left[ {{{(x + 1)}^2} + {y^2} + {z^2}} \right]\)
\( \Leftrightarrow 3{x^2} + 3{y^2} + 3{z^2} + 10x + 2z + 2 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} + \frac{{10}}{3}x + \frac{2}{3}z + \frac{2}{3} = 0\).
Suy ra \(M\) nằm trên mặt cầu \(\left( S \right)\) tâm \(I\left( { - \frac{5}{3};0; - \frac{1}{3}} \right)\), bán kính \(R = \sqrt {{{\left( { - \frac{5}{3}} \right)}^2} + {{\left( { - \frac{1}{3}} \right)}^2} - \frac{2}{3}} = \frac{{2\sqrt 5 }}{3}\).
Vì \(\left\{ {\begin{array}{*{20}{l}}{M \in \left( P \right)}\\{M \in \left( S \right)}\end{array} \Rightarrow M \in \left( C \right)} \right.\), với \(\left( C \right) = \left( P \right) \cap \left( S \right)\).
Ta có \(d\left( {I,\left( P \right)} \right) = \frac{{\left| { - \frac{5}{3} + \frac{1}{3} + 2} \right|}}{{\sqrt 3 }} = \frac{2}{{3\sqrt 3 }}\).
Gọi \(E\) là hình chiếu của \(I\) lên \(\left( P \right)\).
Đường tròn \(\left( C \right)\) có tâm là \(E\) và bán kính bằng \(r = \sqrt {{R^2} - {d^2}\left( {I,\left( P \right)} \right)} = \)\(\sqrt {\frac{{20}}{9} - \frac{4}{{27}}} = \frac{{2\sqrt {42} }}{9}\).
Đường thẳng \(IE\) đi qua điểm \(I\) nhận vectơ pháp tuyến của \({\rm{mp}}\left( P \right)\) là \(\overrightarrow {{n_{\left( P \right)}}} = \left( {1;1; - 1} \right)\) làm vectơ chỉ phương nên có phương trình \(IE:\left\{ {\begin{array}{*{20}{l}}{x = - \frac{5}{3} + t}\\{y = t}\\{z = - \frac{1}{3} - t}\end{array} \Rightarrow E\left( { - \frac{5}{3} + t;t; - \frac{1}{3} - t} \right)} \right.\).
\(E \in \left( P \right) \Leftrightarrow - \frac{5}{3} + t + t + \frac{1}{3} + t + 2 = 0 \Leftrightarrow t = - \frac{2}{9} \Leftrightarrow E\left( { - \frac{{17}}{9}; - \frac{2}{9}; - \frac{1}{9}} \right)\).
Gọi \(H\) là hình chiếu vuông góc của \(O\) lên \({\rm{mp}}\left( P \right)\).
Phương trình đường thẳng \(OH:\left\{ {\begin{array}{*{20}{l}}{x = t'}\\{y = t'}\\{z = - t'}\end{array} \Rightarrow H\left( {t';t'; - t'} \right)} \right.\).
\(H\left( {t';t'; - t'} \right) \in \left( P \right) \Leftrightarrow t' + t' + t' + 2 = 0 \Leftrightarrow t' = - \frac{2}{3} \Leftrightarrow H\left( { - \frac{2}{3}; - \frac{2}{3};\frac{2}{3}} \right)\).
\(\overrightarrow {HE} = \left( { - \frac{{11}}{9};\frac{4}{9}; - \frac{7}{9}} \right) \Rightarrow HE = \sqrt {\frac{{121}}{{81}} + \frac{{16}}{{81}} + \frac{{49}}{{81}}} = \frac{{\sqrt {186} }}{9}\).
vì \(O{M^2} = O{H^2} + H{M^2}\) nên \(OM_{{\rm{max}}}^2 \Leftrightarrow HM_{{\rm{max}}}^2\)
Mà \(H{M_{{\rm{max}}}} = HE + r = \frac{{\sqrt {186} + 2\sqrt {42} }}{9}\).
Suy ra \(OM_{{\rm{max}}}^2 = \frac{4}{3} + {\left( {\frac{{\sqrt {186} + 2\sqrt {42} }}{9}} \right)^2} = \frac{4}{3} + \frac{{354 + 24\sqrt {217} }}{{81}} = \frac{{462 + 24\sqrt {217} }}{{81}}\).
Do đó \(a = 462,b = 217,c = 81\).
Vậy \(a + b + c = 760\).
Chọn C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Phần tư duy đọc hiểu
Từ đoạn số [1], cụ Kép nghĩ rằng mình không phù hợp để chơi hoa vì lí do nào sau đây?
Câu 4:
Gọi \(S\) là tập tất cả các giá trị thực của tham số \(m\) để phương trình \(2{x^3} - 3{x^2} = 2m + 1\) có đúng hai nghiệm phân biệt.
Số phần tử của \(S\) là _______
Câu 5:
Phần tư duy khoa học / giải quyết vấn đề
Điền các cụm từ thích hợp vào chỗ trống.
- Khi dịch hai khe lại gần màn chắn thì khoảng vân sẽ _______
- Khi giảm khoảng cách hai khe thì khoảng vân sẽ _______
Câu 7:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ
Hàm số \(g\left( x \right) = 2f\left( x \right) - {x^2}\) đồng biến trên khoảng nào trong các khoảng sau đây?
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 5)
Top 5 đề thi Đánh giá năng lực trường ĐH Bách khoa Hà Nội năm 2023 - 2024 có đáp án (Đề 1)
Đề thi Đánh giá tư duy tốc chiến Đại học Bách khoa năm 2023-2024 có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 3)
ĐGTD ĐH Bách khoa - Sử dụng ngôn ngữ Tiếng Anh - Thì tương lai hoàn thành
về câu hỏi!