Xét các số phức \(z = a + bi\left( {a,b \in \mathbb{R}} \right)\) thỏa mãn \(\left| {z - 4 - 3i} \right| = 2\sqrt 5 \) và biểu thức \(P = \left| {z + 4 - 7i} \right| + 2\left| {\bar z - 2 + 9i} \right|\).
Kéo ô thích hợp thả vào vị trí tương ứng để hoàn thành các câu sau

Tập hợp điểm biểu diễn số phức \(z\) là đường tròn có bán kính bằng _______
Khi P đạt giá trị nhỏ nhất thì giá trị của \[{a^2} + {b^2}\] bằng _______
Quảng cáo
Trả lời:

Đáp án
Tập hợp điểm biểu diễn số phức \(z\) là đường tròn có bán kính bằng \(2\sqrt 5 \)
Khi P đạt giá trị nhỏ nhất thì giá trị của \[{a^2} + {b^2}\] bằng 53
Phương pháp giải
- Ta có: \(P = \left| {z + 4 - 7i} \right| + 2\left| {\bar z - 2 + 9i\left| = \right|z + 4 - 7i\left| { + 2} \right|z - 2 - 9i} \right|\).
- Gọi \(M\left( {a;b} \right)\) là điểm biểu diễn số phức \(z = a + bi\left( {a,b \in \mathbb{R}} \right)\)
Lời giải
Ta có: \(P = \left| {z + 4 - 7i} \right| + 2\left| {\bar z - 2 + 9i\left| = \right|z + 4 - 7i\left| { + 2} \right|z - 2 - 9i} \right|\).
Gọi \(M\left( {a;b} \right)\) là điểm biểu diễn số phức \(z = a + bi\left( {a,b \in \mathbb{R}} \right) \Rightarrow M \in \left( C \right)\) với \(\left( C \right)\) là đường tròn tâm \(I\left( {4;3} \right)\), bán kính \(R = 2\sqrt 5 \).
\(A\left( { - 4;7} \right)\) là điểm biểu diễn số phức \({z_1} = - 4 + 7i;\) \(B\left( {2;9} \right)\) là điểm biểu diễn số phức \({z_2} = 2 + 9i\), khi đó \(P = MA + 2MB\).
Ta có: \(IB = 2\sqrt {10} > R \Rightarrow B\) nằm ngoài đường tròn \(\left( C \right)\).
Ta có: \(IA = 4\sqrt 5 = 2R\), xét \(E\) sao cho \(\overrightarrow {IE} = \frac{1}{4}\overrightarrow {IA} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{IE = \frac{1}{2}R}\\{E\left( {2;4} \right)}\end{array}} \right.\) và \(E\) nằm trong \(\left( C \right)\).

Trường hợp 1: \(M \in IA\). Dễ thấy: \(MA = 2ME\).
Trường hợp 2: \(M \notin IA\), xét và có \(\frac{{EI}}{{MI}} = \frac{{IM}}{{IA}} = \frac{1}{2},\widehat {MIE} = \widehat {MIA} \Rightarrow {\rm{\Delta }}EIM\) đồng dạng với suy ra \(\frac{{ME}}{{MA}} = \frac{1}{2} \Leftrightarrow MA = 2ME\).
Từ đó suy ra: \(MA = 2ME\,\,\forall M \in \left( C \right)\).
Khi đó: \(P = 2\left( {ME + MB} \right) \ge 2EB = 10\).
Suy ra \({\rm{Min}}P = 10\) khi \({\rm{M}}\) là giao điểm của đường thẳng \({\rm{EB}}\) với đường tròn \(\left( C \right)(M\) nằm giữa \({\rm{E}},{\rm{B}})\).
Phương trình \(EB:x = 2\) cắt \(\left( C \right)\) tại hai điểm \(\left( {2;7} \right);\left( {2; - 1} \right)\).
Vì \(M\) nằm giữa \(E,B \Rightarrow M\left( {2;7} \right)\) là điểm cần tìm.
Suy ra \(a = 2,b = 7 \Rightarrow {a^2} + {b^2} = 53\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Phương pháp giải
Xét tính đúng, sai cho từng đáp án, dựa vào các công thức cộng véc tơ, độ dài véc tơ, các tính chất hai véc tơ cùng phương, hai véc tơ vuông góc.
Tọa độ véc tơ
Lời giải
\(\vec a + \vec b = \left( {2 + 1; - 2 - 1; - 4 + 1} \right) = \left( {3; - 3; - 3} \right)\) nên A đúng.
\(\vec a.\vec b = 2.1 + \left( { - 2} \right).\left( { - 1} \right) + \left( { - 4} \right).1 = 0\) nên \(\vec a \bot \vec b\) hay B đúng.
\(\left| {\vec b} \right| = \sqrt {{1^2} + {{( - 1)}^2} + {1^2}} = \sqrt 3 \) nên C đúng.
Lời giải
Đáp án: "2"
Phương pháp giải
- Tính đạo hàm và khảo sát hàm \(y = 2{x^3} - 3{x^2}\)
- Số nghiệm của phương trình đã cho bằng số giao điểm của hai đồ thị: \(\left\{ {\begin{array}{*{20}{l}}{\left( C \right):y = 2{x^3} - 3{x^2}}\\{d:y = 2m + 1}\end{array}} \right.\)
Lời giải
Xét hàm số: \(y = 2{x^3} - 3{x^2} \Rightarrow y' = 6{x^2} - 6x \Rightarrow y' = 0 \Leftrightarrow x = 0 \vee x = 1\).
Bảng biến thiên:

Số nghiệm của phương trình đã cho bằng số giao điểm của hai đồ thị: \(\left\{ {\begin{array}{*{20}{l}}{\left( C \right):y = 2{x^3} - 3{x^2}}\\{d \cdot y = 2m + 1}\end{array}} \right.\)
Nhìn vào bảng biến thiên ta thấy: Phương trình đã cho có hai nghiệm phân biệt
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2m + 1 = - 1}\\{2m + 1 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = - 1}\\{m = - \frac{1}{2}}\end{array} \Rightarrow S = \left\{ { - 1; - \frac{1}{2}} \right\}} \right.} \right.\).
Câu 3
A. Cụ đã tới cái tuổi được hoàn toàn nhàn rỗi để dưỡng lấy tính tình.
B. Mình chỉ là một anh nhà nho sống vào giữa buổi Tây Tàu nhố nhăng, chỉ là một kẻ chọn nhầm thế kỷ với hai bàn tay không có lợi khí mới, thì riêng lo cho thân thế, lo cho sự mất còn của mình cũng chưa xong.
C. Đủ thời giờ mà săn sóc đến hoa mới là việc khó.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.