Câu hỏi:

13/11/2024 573

III. Vận dụng

Chọn ngẫu nhiên một số tự nhiên có 3 chữ số. Gọi \[A\] là biến cố “Số tự nhiên được chọn gồm 3 chữ số \[3\,;\,\,4\,;\,\,5\]”. Xác suất của biến cố \[A\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Không gian mẫu của phép thử là \(\Omega = \left\{ {100\,;\,\,101\,;\,\,102\,;\,\,...\,;\,\,999} \right\}\).

Không gian mẫu của phép thử có \(\frac{{999 - 100}}{1} + 1 = 900\) (phần tử).

Khả năng được chọn của các số là như nhau nên các kết quả của phép thử là đồng khả năng.

Số kết quả thuận lợi cho biến cố \[A\] là số các số tự nhiên có 3 chữ số khác nhau được tạo thành từ 3 chữ số \[3\,;\,\,4\,;\,\,5\].

Có 6 kết quả thuận lợi cho biến cố A là \[345\,;\,\,354\,;\,\,435\,;\,\,453\,;\,\,543\,;\,\,534.\]

Vậy xác suất xảy ra biến cố \[A\] là: \(P\left( A \right) = \frac{6}{{900}} = \frac{2}{{300}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Bảng kết quả có thể xảy ra:

Hộp 1

Hộp 2

1

2

3

4

5

6

16

26

36

46

56

7

17

27

37

47

57

8

18

28

38

48

58

9

19

29

39

49

59

Không gian mẫu của phép thử là \(\Omega = \left\{ {16;\,\,26;\,\,36;...;\,\,49;\,\,59} \right\}\).

Do đó, không gian mẫu của phép thử có 20 phần tử.

Lời giải

Đáp án đúng là: D

Các kết quả có thể xảy ra được liệt kê trong bảng dưới đây:

Xúc xắc 1

Xúc xắc 2

1

2

3

4

5

6

1

\[\left( {1\,;\,\,1} \right)\]

\[\left( {2\,;\,\,1} \right)\]

\[\left( {3\,;\,\,1} \right)\]

\[\left( {4\,;\,\,1} \right)\]

\[\left( {5\,;\,\,1} \right)\]

\[\left( {6\,;\,\,1} \right)\]

2

\[\left( {1\,;\,\,2} \right)\]

\[\left( {2\,;\,\,2} \right)\]

\[\left( {3\,;\,\,2} \right)\]

\[\left( {4\,;\,\,2} \right)\]

\[\left( {5\,;\,\,2} \right)\]

\[\left( {6\,;\,\,2} \right)\]

3

\[\left( {1\,;\,\,3} \right)\]

\[\left( {2\,;\,\,3} \right)\]

\[\left( {3\,;\,\,3} \right)\]

\[\left( {4\,;\,\,3} \right)\]

\[\left( {5\,;\,\,3} \right)\]

\[\left( {6\,;\,\,3} \right)\]

4

\[\left( {1\,;\,\,4} \right)\]

\[\left( {2\,;\,\,4} \right)\]

\[\left( {3\,;\,\,4} \right)\]

\[\left( {4\,;\,\,4} \right)\]

\[\left( {5;{\rm{ }}4} \right)\]

\[\left( {6\,;\,\,4} \right)\]

5

\[\left( {1\,;\,\,5} \right)\]

\[\left( {2\,;\,\,5} \right)\]

\[\left( {3\,;\,\,5} \right)\]

\[\left( {4\,;\,\,5} \right)\]

\[\left( {5;{\rm{ }}5} \right)\]

\[\left( {6\,;\,\,5} \right)\]

6

\[\left( {1\,;\,\,6} \right)\]

\[\left( {2\,;\,\,6} \right)\]

\[\left( {3\,;\,\,6} \right)\]

\[\left( {4\,;\,\,6} \right)\]

\[\left( {5;{\rm{ }}6} \right)\]

\[\left( {6\,;\,\,6} \right)\]

Có 36 kết quả có thể xảy ra tương ứng với các ô trong bảng.

Do 2 con xúc xắc cân đối và đồng chất nên khả năng xuất hiện các mặt là như nhau. Do đó các kết quả của phép thử có cùng khả năng xảy ra.

Có 5 kết quả thuận lợi cho biến cố là \[\left( {1\,;\,\,5} \right)\,;\,\,\left( {2\,;\,\,4} \right)\,;\,\,\left( {3\,;\,\,3} \right)\,;\,\,\left( {4\,;\,\,2} \right)\,;\,\,\left( {5\,;\,\,1} \right).\]

Vậy xác suất xảy ra của biến cố là \(P = \frac{5}{{36}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP