Câu hỏi:

14/11/2024 222

II. Thông hiểu

Lấy ngẫu nhiên hai viên bi từ một thùng có 4 bi xanh, 5 bi đỏ và 6 bi vàng. Số phần tử của không gian mẫu là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Tổng số bi trong thùng là \(4 + 5 + 6 = 15\)(viên bi).

Số cách chọn ngẫu nhiên 1 viên bi là 15 cách chọn.

Số cách chọn ngẫu nhiên viên bi còn lại là 14 cách chọn.

Suy ra số cách lấy ngẫu nhiên hai viên bi từ thùng là \(15 \cdot 14 = 210\) (cách).

Tuy nhiên mỗi cách chọn đã bị tính 2 lần.

Do đó số phần tử của không gian mẫu là: \(\frac{{210}}{2} = 105\) (phần tử).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Đánh số các bạn nam lần lượt là \[1\,;\,\,3\,;\,\,5.\]

Đánh số các bạn nữ lần lượt là \[2\,;\,\,4\,;\,\,6.\]

Để biến cố xảy ra thì trong hai bạn được chọn phải có 1 số lẻ và một số chẵn.

Bạn số 1

Bạn số 2

1

2

3

4

5

6

1

\[\left( {1\,;\,\,1} \right)\]

\[\left( {2\,;\,\,1} \right)\]

\[\left( {3\,;\,\,1} \right)\]

\[\left( {4\,;\,\,1} \right)\]

\[\left( {5\,;\,\,1} \right)\]

\[\left( {6\,;\,\,1} \right)\]

2

\[\left( {1\,;\,\,2} \right)\]

\[\left( {2\,;\,\,2} \right)\]

\[\left( {3\,;\,\,2} \right)\]

\[\left( {4\,;\,\,2} \right)\]

\[\left( {5\,;\,\,2} \right)\]

\[\left( {6\,;\,\,2} \right)\]

3

\[\left( {1\,;\,\,3} \right)\]

\[\left( {2\,;\,\,3} \right)\]

\[\left( {3\,;\,\,3} \right)\]

\[\left( {4\,;\,\,3} \right)\]

\[\left( {5\,;\,\,3} \right)\]

\[\left( {6\,;\,\,3} \right)\]

4

\[\left( {1\,;\,\,4} \right)\]

\[\left( {2\,;\,\,4} \right)\]

\[\left( {3\,;\,\,4} \right)\]

\[\left( {4\,;\,\,4} \right)\]

\[\left( {5;{\rm{ }}4} \right)\]

\[\left( {6\,;\,\,4} \right)\]

5

\[\left( {1\,;\,\,5} \right)\]

\[\left( {2\,;\,\,5} \right)\]

\[\left( {3\,;\,\,5} \right)\]

\[\left( {4\,;\,\,5} \right)\]

\[\left( {5\,;\,\,5} \right)\]

\[\left( {6\,;\,\,5} \right)\]

6

\[\left( {1\,;\,\,6} \right)\]

\[\left( {2\,;\,\,6} \right)\]

\[\left( {3\,;\,\,6} \right)\]

\[\left( {4\,;\,\,6} \right)\]

\[\left( {5;{\rm{ }}6} \right)\]

\[\left( {6\,;\,\,6} \right)\]

Vì một bạn không thể được chọn 2 lần nên các ô bị gạch trong bảng không có khả năng xảy ra.

Không gian mẫu của phép thử là \(\Omega = \left\{ {\left( {2;\,\,1} \right);\,\,\left( {3;\,\,1} \right);\left( {4;\,\,1} \right);...;\left( {5;\,\,6} \right)} \right\}\).

Không gian mẫu của phép thử có 30 phần tử.

Vì khả năng được chọn của các bạn là như nhau nên các kết quả của phép thử là đồng khả năng.

Có 18 kết quả thuận lợi cho biến cố là \[\left( {2\,;\,\,1} \right)\,;\,\,\left( {4\,;\,\,1} \right)\,;\,\,\left( {6\,;\,\,1} \right)\,;\,\,\left( {1\,;\,\,2} \right)\,;\,\,\left( {3\,;\,\,2} \right)\,;\,\,\left( {5\,;\,\,2} \right)\,;\,\,\left( {2\,;\,\,3} \right)\,;\,\,\left( {4\,;\,\,3} \right)\,;\]\[\left( {6\,;\,\,3} \right)\,;\,\,\left( {1\,;\,\,4} \right)\,;\,\,\left( {3\,;\,\,4} \right)\,;\,\,\left( {5\,;\,\,4} \right)\,;\,\,\left( {2\,;\,\,5} \right)\,;\,\,\left( {4\,;\,\,5} \right)\,;\,\,\left( {6\,;\,\,5} \right)\,;\,\,\left( {1\,;\,\,6} \right)\,;\,\,\left( {3\,;\,\,6} \right)\,;\,\,\left( {5\,;\,\,6} \right).\]

Vậy xác suất của biến cố là \(P = \frac{{18}}{{30}} = \frac{3}{5}\).

Lời giải

Đáp án đúng là: D

Bảng kết quả có thể xảy ra:

Hộp 1

Hộp 2

1

2

3

4

5

6

16

26

36

46

56

7

17

27

37

47

57

8

18

28

38

48

58

9

19

29

39

49

59

Không gian mẫu của phép thử là \(\Omega = \left\{ {16;\,\,26;\,\,36;...;\,\,49;\,\,59} \right\}\).

Do đó, không gian mẫu của phép thử có 20 phần tử.

Câu 3

Một hộp chứa 4 quả cầu trắng và 6 quả cầu xanh có kích thước và khối lượng như nhau. Lấy ngẫu nhiên 3 quả cầu từ trong hộp. Hoạt động nào sau đây không phải là biến cố của phép thử trên?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Gieo một đồng xu cân đối và đồng chất ba lần. Xét biến cố \[A:\] “Mặt ngửa xuất hiện ít nhất 1 lần”. Tập hợp mô tả kết quả thuận lợi cho biến cố \[A\] là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

I. Nhận biết

Các kết quả của phép thử nào sau đây không cùng khả năng xảy ra?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay