Câu hỏi:

06/12/2024 173

Một phòng thí nghiệm ban đầu mua về một mẫu polonium có chứa \(2,1\;{\rm{g}}_{84}^{210}{\rm{Po}}\). Các hạt nhân \(_{84}^{210}{\rm{Po}}\) phóng xạ \(\alpha \) và biến thành hạt nhân bền X. Xác định chu kì bán rã của \(_{84}^{210}{\rm{Po}}\), biết rằng trong 1 năm sau đó nó tạo ra \(0,0084\;{\rm{mol}}\) khí He.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Số nguyên tử \(_{84}^{210}{\rm{Po}}\) tại thời điểm ban đầu:

\({N_0} = \frac{{{m_0}}}{A}{N_A} = \frac{{2,1}}{{210}}.6,{02.10^{23}} = 6,{02.10^{21}}\) nguyên tử.

Số nguyên tử \(_2^4{\rm{He}}\) được tạo thành bằng số nguyên tử \(_{84}^{210}{\rm{Po}}\) đã phân rã:

\(\Delta N = {N_0} - N = {N_0}\left( {1 - {2^{ - \frac{t}{T}}}} \right)\)

Số nguyên tử \(_2^4{\rm{He}}\) được tạo thành trong một năm là:

\(\Delta N = (0,0084\;{\rm{mol}}) \cdot \left( {6,02 \cdot {{10}^{23}}\frac{{{\rm{ nguy\^e n tu }}}}{{{\rm{mol}}}}} \right) = 5,06 \cdot {10^{21}}\) nguyên tử

Ta có: \(\left( {1 - {2^{ - \frac{1}{T}}}} \right) = \frac{{\Delta N}}{{{N_0}}} \Rightarrow {2^{ - \frac{1}{T}}} = 1 - \frac{{\Delta N}}{{{N_0}}} \Rightarrow - \frac{1}{T} = {\log _2}\left( {1 - \frac{{\Delta N}}{{{N_0}}}} \right)\)

T = 0,378 năm = 138 ngày.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một trong những nguồn cung cấp năng lượng được sử dụng cho các máy phát nhiệt điện đồng vị phóng xạ (Radioisotope Thermoelectric Generator – RTG) hiện nay là \(_{84}^{210}{\rm{Po}}\) bởi nguồn năng lượng lớn mà quá trình phân rã của hạt nhân này mang lại. Biết rằng chu kì bán rã của \(_{84}^{210}{\rm{Po}}\) là 138 ngày và hạt nhân con của quá trình phóng xạ là \(_{82}^{206}\;{\rm{Pb}}.\) Nếu tại thời điểm t = 0 có một mẫu polonium nguyên chất bắt đầu phân rã thì tại thời điểm t1, tỉ số giữa số hạt nhân \(_{82}^{206}\;{\rm{Pb}}\) tạo thành và số hạt nhân \(_{84}^{210}{\rm{Po}}\)còn lại bằng 15. Tại thời điểm t2 = t1 + 966 ngày thì tỉ số này sẽ bằng bao nhiêu?

Xem đáp án » 06/12/2024 352

Câu 2:

Một mẫu U238 có khối lượng 1 (g) phát ra 12400 hạt anpha trong một giây. Tìm chu kì bán rã của đồng vị này. Coi một năm có 365 ngày, số avogadro là 6,023.1023.

Xem đáp án » 06/12/2024 148

Câu 3:

Chất phóng xạ pôlôni \(_{84}^{210}Po\) phát ra tia α và biến đổi thành chì\(_{82}^{206}Pb.\)Cho chu kì bán rã của \(_{84}^{210}Po\)là 138 ngày. Ban đầu (t = 0) có một mẫu pôlôni nguyên chất. Tại thời điểm t1, tỉ số giữa số hạt nhân pôlôni và số hạt nhân chì trong mẫu là 1/3. Tại thời điểm t2 = t1 + 276 ngày, tỉ số giữa số hạt nhân pôlôni và số hạt nhân chì trong mẫu là bao nhiêu?

Xem đáp án » 06/12/2024 102

Câu 4:

Ban đầu có \(12,0\;{\rm{g}}\) cobalt \(_{27}^{60}{\rm{Co}}\) là chất phóng xạ \({\beta ^ - }\)với chu kì bán rã \({\rm{T}} = 5,27\) năm. Tính số nguyên tử đã phân rã sau thời gian \({\rm{t}} = 10,54\) năm.

Xem đáp án » 06/12/2024 72

Câu 5:

\(_{84}^{210}{\rm{Po}}\) là một đồng vị phóng xạ có chu kì bán rã là 138,4 ngày. Xét một mẫu chất đang chứa N0 hạt nhân \(_{84}^{210}{\rm{Po}}\) (tại thời điểm ban đầu). Sau bao lâu kể từ thời điểm ban đầu thì tỉ số giữa số hạt nhân \(_{84}^{210}{\rm{Po}}\) đã phân rã thành hạt nhân khác và số hạt nhân \(_{84}^{210}{\rm{Po}}\) còn lại bằng 7?

Xem đáp án » 06/12/2024 65

Câu 6:

Một mẫu chất phóng xạ X phân rã theo thời gian và phát ra các hạt . Số lượng các hạt này được ghi nhận bởi một máy thu (ống Geiger-Muller) và được biểu diễn theo thời gian t như đồ thị ở dưới

Hằng số phóng xạ của chất phóng xạ là

Xem đáp án » 06/12/2024 53

Bình luận


Bình luận