Câu hỏi:
16/12/2024 8,446Trong một khung lưới ô vuông gồm các hình lập phương, người ta đưa ra một cách kiểm tra bốn nút lưới (đỉnh hình lập phương) bất kì có đồng phẳng hay không bằng cách gắn hệ trục toạ độ \[Oxyz\] vào khung lưới ô vuông và lập phương trình mặt phẳng đi qua ba nút lưới trong bốn nút lưới đã cho. Giả sử có ba nút lưới mà toạ độ lần lượt là \[\left( {1;1;10} \right)\], \[\left( {4;3;1} \right)\],\[\left( {3;2;5} \right)\] và mặt phẳng đi qua ba nút lưới đó có phương trình \[x + my + nz + p = 0\]. Giá trị của\[m + n + p\] là bao nhiêu?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Xét ba điểm \(A\left( {1;1;10} \right)\), \(B\left( {4;3;1} \right)\) và \(C\left( {3;2;5} \right)\). Khi đó \(\overrightarrow {AB} = \left( {3;2; - 9} \right)\) và \(\overrightarrow {AC} = \left( {2;1; - 5} \right)\).
Suy ra \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 9}\\1&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 9}&3\\{ - 5}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&2\\2&1\end{array}} \right|} \right) = \left( { - 1; - 3; - 1} \right)\).
Ta có \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 1; - 3; - 1} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {ABC} \right)\) nên phương trình mặt phẳng \(\left( {ABC} \right)\) là
\(\left( { - 1} \right).\left( {x - 1} \right) + \left( { - 3} \right).\left( {y - 1} \right) + \left( { - 1} \right).\left( {z - 10} \right) = 0 \Leftrightarrow x + 3y + z - 14 = 0\).
Suy ra \(m = 3\), \(n = 1\), \(p = - 14\). Vậy \(m + n + p = - 10\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một gia đình muốn làm cánh cổng (như hình vẽ). Phần phía trên cổng có hình dạng là một parabol với \(IH = 2,5{\rm{m}}\), phần phía dưới là một hình chữ nhật kích thước cạnh là \(AD = 4{\rm{m}}\), \(AB = 6{\rm{m}}\). Giả sử giá để làm phần cổng được tô màu là 1000000 đồng/m2 và giá để làm phần cổng phía trên là 1200000 đồng/m2. Số tiền tổng cộng gia đình cần trả là bao nhiêu triệu đồng?
Câu 2:
Cho đồ thị hàm số \(y = {e^x}\) và hình được tô màu như dưới
a) Hình phẳng được tô màu giới hạn bởi 3 đường.
b) Diện tích hình phẳng được tính bởi công thức \(S = \int\limits_{ - 1}^1 {{{\left( {{e^x}} \right)}^2}dx} \).
c) Diện tích hình phẳng \(S = e - \frac{1}{e}\).
d) Thể tích khối tròn xoay khi quay hình phẳng đó quanh trục \(Ox\) là \(V = \frac{1}{2}\pi \left( {{e^2} - \frac{1}{{{e^2}}}} \right)\).
Câu 3:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_2^5 {f\left( x \right)dx = 2025} \). Tính \(\int\limits_0^1 {f\left( {3x + 2} \right)} dx\).
Câu 4:
Biết \(F\left( x \right) = {x^3} - 3{x^2} + 2x\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\).
a) \(F\left( 1 \right) = 0\).
b) \(\int {F\left( x \right)dx} = 3{x^2} - 6x + 2\).
c) \(f\left( x \right) = 3{x^2} - 6x + 2\).
d) Nếu \(G\left( x \right)\) cũng là một nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\) thì \(F\left( x \right) = G\left( x \right)\).
Câu 5:
Trong không gian với hệ trục tọa độ \(Oxyz\), cho hai mặt phẳng \(\left( \alpha \right):x - 2y + 3z + 1 = 0\) và \(\left( \beta \right):2x - 4y + 6z + 1 = 0\). Khi đó
Câu 6:
Cho hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\) liên tục và không âm trên đoạn \(\left[ {1;3} \right]\), trục \(Ox\) và hai đường thẳng \(x = 1;x = 3\) quay quanh trục \(Ox\), ta được khối tròn xoay. Thể tích của khối tròn xoay này được tính theo công thức nào dưới đây?
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận