Câu hỏi:

12/01/2025 163

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B,\) cạnh bên \(SA\) vuông góc với đáy. Gọi \(H\) là chân đường cao kẻ từ \(A\) của tam giác \(SAB\). Khẳng định nào dưới đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B,\) cạnh bên \(SA\) vuông góc với đáy. Gọi \(H\) là chân đường cao kẻ từ \(A\) của tam giác \(SAB\). Khẳng định nào dưới đây là (ảnh 1)

Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) mà \(BC \bot AB\) nên \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH\).

Lại có \(AH \bot SB\). Do đó \(AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Lúc đầu có 300 vi khuẩn. Sau 1 giờ số vi khuẩn là 705 con.

Ta có \(\left\{ \begin{array}{l}f\left( 0 \right) = 300 = C.{e^{k.0}} = C\\f\left( 1 \right) = 705 = C.{e^{k.1}} = C.{e^k}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C = 300\\{e^k} = \frac{{705}}{{300}} = 2,35\end{array} \right.\).

Vậy \(f\left( x \right) = 300.{\left( {2,35} \right)^x}\).

Số lượng vi khuẩn có được sau 5 giờ là \(f\left( 5 \right) = 300.{\left( {2,35} \right)^5} \approx 21501,1\) con.

Lời giải

Hướng dẫn giải

Trả lời: 1

Qua điểm \(O\) có duy nhất một đường thẳng đi qua và vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP