Câu hỏi:

12/01/2025 99 Lưu

Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ dưới đây

Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ dưới đâyĐường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},{x_2}\). Biết \({x_2} = 2{x_1}\). Tính \(\f (ảnh 1)

Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},{x_2}\). Biết \({x_2} = 2{x_1}\). Tính \(\frac{{{a^3}}}{{{b^3}}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Trả lời: 2

Từ đồ thị có \({x_1}\) là nghiệm của phương trình \({\log _b}x = 3\) nên \({\log _b}{x_1} = 3 \Leftrightarrow {x_1} = {b^3}\).

Từ đồ thị có \({x_2}\) là nghiệm của phương trình \({\log _a}x = 3\) nên \({\log _a}{x_2} = 3 \Leftrightarrow {x_2} = {a^3}\).

Do đó \({x_2} = 2{x_1}\) \( \Rightarrow {a^3} = 2{b^3} \Rightarrow \frac{{{a^3}}}{{{b^3}}} = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Lúc đầu có 300 vi khuẩn. Sau 1 giờ số vi khuẩn là 705 con.

Ta có \(\left\{ \begin{array}{l}f\left( 0 \right) = 300 = C.{e^{k.0}} = C\\f\left( 1 \right) = 705 = C.{e^{k.1}} = C.{e^k}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C = 300\\{e^k} = \frac{{705}}{{300}} = 2,35\end{array} \right.\).

Vậy \(f\left( x \right) = 300.{\left( {2,35} \right)^x}\).

Số lượng vi khuẩn có được sau 5 giờ là \(f\left( 5 \right) = 300.{\left( {2,35} \right)^5} \approx 21501,1\) con.

Lời giải

Hướng dẫn giải

Trả lời: 1

Qua điểm \(O\) có duy nhất một đường thẳng đi qua và vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP