Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ dưới đây
Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},{x_2}\). Biết \({x_2} = 2{x_1}\). Tính \(\frac{{{a^3}}}{{{b^3}}}\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Trả lời: 2
Từ đồ thị có \({x_1}\) là nghiệm của phương trình \({\log _b}x = 3\) nên \({\log _b}{x_1} = 3 \Leftrightarrow {x_1} = {b^3}\).
Từ đồ thị có \({x_2}\) là nghiệm của phương trình \({\log _a}x = 3\) nên \({\log _a}{x_2} = 3 \Leftrightarrow {x_2} = {a^3}\).
Do đó \({x_2} = 2{x_1}\) \( \Rightarrow {a^3} = 2{b^3} \Rightarrow \frac{{{a^3}}}{{{b^3}}} = 2\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Lúc đầu có 300 vi khuẩn. Sau 1 giờ số vi khuẩn là 705 con.
Ta có \(\left\{ \begin{array}{l}f\left( 0 \right) = 300 = C.{e^{k.0}} = C\\f\left( 1 \right) = 705 = C.{e^{k.1}} = C.{e^k}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C = 300\\{e^k} = \frac{{705}}{{300}} = 2,35\end{array} \right.\).
Vậy \(f\left( x \right) = 300.{\left( {2,35} \right)^x}\).
Số lượng vi khuẩn có được sau 5 giờ là \(f\left( 5 \right) = 300.{\left( {2,35} \right)^5} \approx 21501,1\) con.
Lời giải
Hướng dẫn giải
Trả lời: 1
Qua điểm \(O\) có duy nhất một đường thẳng đi qua và vuông góc với mặt phẳng \(\left( {ABCD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.