Câu hỏi:

12/01/2025 1,502

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B,\) cạnh bên \(SA\) vuông góc với đáy. Gọi \(H\) là chân đường cao kẻ từ \(A\) của tam giác \(SAB\). Khẳng định nào dưới đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho hình chóp  S . A B C  có đáy  A B C  là tam giác vuông tại  B ,  cạnh bên  S A  vuông góc với đáy. Gọi  H  là chân đường cao kẻ từ  A  của tam giác  S A B . Khẳng định nào dưới đây là sai? (ảnh 1)

Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) mà \(BC \bot AB\) nên \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH\).

Lại có \(AH \bot SB\). Do đó \(AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Trả lời: 0,84

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình chữ nhật,  A B = 1 , A D = 2 √ 3 . Cạnh bên  S A  vuông góc với đáy, biết tam giác  S A D  có diện tích  S = 3 . Tính khoảng cách từ  C  đến  ( S B D ) . (kết quả làm tròn đến hàng phần trăm). (ảnh 1)

Do \({S_{SAD}} = 3 = \frac{1}{2}SA.AD \Rightarrow SA = \frac{6}{{2\sqrt 3 }} = \sqrt 3 \).

Mặt khác ta có \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right)\).

Kẻ \(AH \bot BD,AK \bot SH\) tại \(K\). Suy ra \(d\left( {A,\left( {SBD} \right)} \right) = AK\).

Ta có \(BD = \sqrt {A{B^2} + A{D^2}} = \sqrt {13} \Rightarrow AH = \frac{{AB.AD}}{{BD}} = \frac{{2\sqrt 3 }}{{\sqrt {13} }} = \frac{{2\sqrt {39} }}{{13}}\).

\( \Rightarrow AK = \frac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }} = \frac{{\sqrt 3 .\frac{{2\sqrt {39} }}{{13}}}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( {\frac{{2\sqrt {39} }}{{13}}} \right)}^2}} }} = \frac{{2\sqrt {51} }}{{17}}\).

Vậy \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right) = \frac{{2\sqrt {51} }}{{17}} \approx 0,84\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP