Câu hỏi:

25/01/2025 150 Lưu

Có 8 quả cân lần lượt là 1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg. Chọn ngẫu nhiên 3 quả cân trong 8 quả cân đó. Tính xác suất để trọng lượng 3 quả cân được chọn không vượt quá 9kg.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn ngẫu nhiên 3 quả cân trong 8 quả cân ta có \[\left| {\rm{\Omega }} \right| = {\rm{C}}_8^3 = 56\]

Gọi A là biến cố chọn được 3 quả cân và tổng trọng lượng 3 quả cân không vượt quá 9kg.

1 + 2 + 3 = 6 < 9

1 + 2 + 4 = 7 < 9

1 + 2 + 5 = 8 < 9

1 + 2 + 6 = 9

1 + 3 + 4 = 8 < 9

1 + 3 + 5 = 9

2 + 3 + 4 = 9

Nên \[\left| {\rm{A}} \right| = 7\]

Vậy \[{\rm{P(A) = }}\frac{{\left| {\rm{A}} \right|}}{{\left| {\rm{\Omega }} \right|}} = \frac{7}{{56}} = \frac{1}{8}\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số phần tử của không gian mẫu \[{\rm{\Omega }}\] là \[\left| {\rm{\Omega }} \right|{\rm{ = C}}_{\rm{9}}^{\rm{5}}{\rm{ = 126}}\]

Gọi A là biến cố “Trong 5 thẻ được rút có các thẻ ghi số 1,2,3”. Ta có: \[\left| {\rm{A}} \right|{\rm{ = C}}_{\rm{6}}^{\rm{2}}{\rm{ = 15}}\]

Suy ra \[{\rm{P(A) = }}\frac{{\left| {\rm{A}} \right|}}{{\left| {\rm{\Omega }} \right|}}{\rm{ = }}\frac{{{\rm{15}}}}{{{\rm{126}}}}{\rm{ = }}\frac{{\rm{5}}}{{{\rm{42}}}}\]

Đáp án cần chọn là: D

Lời giải

Gọi A là biến cố: “Có ít nhất một viên trúng vòng 10”.

Khi đó biến cố đối của biến cố A là: \[{\rm{\bar A}}\]: “Không có viên nào trúng vòng 10”.

\[ \Rightarrow {\rm{P}}\left( {{\rm{\bar A}}} \right) = \left( {1 - 0,75} \right).\left( {1 - 0,85} \right) = 0,0375\]

\[ \Rightarrow {\rm{P}}\left( {\rm{A}} \right) = 1 - {\rm{P}}\left( {{\rm{\bar A}}} \right) = 1 - 0,0375 = 0,9625\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP