Câu hỏi:

25/01/2025 121

Gọi T là phép thử “Gieo đồng thời hai con súc sắc đối xứng và đồng chất”. Gọi E là biến cố “Có đúng 1 con súc sắc xuất hiện mặt 1 chấm”.  Tính P(E).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gieo đồng thời hai con súc sắc đối xứng và đồng chất ta có

\[\Omega = \left\{ {\left( {x;y} \right)|1 \le x \le 6;1 \le y \le 6} \right\}\]. Do đó \[\left| {\rm{\Omega }} \right| = 6.6 = 36\]

E là biến cố “Có đúng 1 con súc sắc xuất hiện mặt 1 chấm”. Khi đó:

\[E = \left\{ {\left( {1;2} \right),\left( {1;3} \right),\left( {1;4} \right),\left( {1;5} \right),\left( {1;6} \right),\left( {2;1} \right),\left( {3;1} \right),\left( {4;1} \right),\left( {5;1} \right),\left( {6;1} \right)} \right\}\]

Nên \[\left| {\rm{E}} \right| = 10\]

Vậy \[{\rm{P(E) = }}\frac{{\left| {\rm{E}} \right|}}{{\left| {\rm{\Omega }} \right|}} = \frac{{10}}{{36}} = \frac{5}{{18}}\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số phần tử của không gian mẫu \[{\rm{\Omega }}\] là \[\left| {\rm{\Omega }} \right|{\rm{ = C}}_{\rm{9}}^{\rm{5}}{\rm{ = 126}}\]

Gọi A là biến cố “Trong 5 thẻ được rút có các thẻ ghi số 1,2,3”. Ta có: \[\left| {\rm{A}} \right|{\rm{ = C}}_{\rm{6}}^{\rm{2}}{\rm{ = 15}}\]

Suy ra \[{\rm{P(A) = }}\frac{{\left| {\rm{A}} \right|}}{{\left| {\rm{\Omega }} \right|}}{\rm{ = }}\frac{{{\rm{15}}}}{{{\rm{126}}}}{\rm{ = }}\frac{{\rm{5}}}{{{\rm{42}}}}\]

Đáp án cần chọn là: D

Lời giải

Gọi A là biến cố: “Có ít nhất một viên trúng vòng 10”.

Khi đó biến cố đối của biến cố A là: \[{\rm{\bar A}}\]: “Không có viên nào trúng vòng 10”.

\[ \Rightarrow {\rm{P}}\left( {{\rm{\bar A}}} \right) = \left( {1 - 0,75} \right).\left( {1 - 0,85} \right) = 0,0375\]

\[ \Rightarrow {\rm{P}}\left( {\rm{A}} \right) = 1 - {\rm{P}}\left( {{\rm{\bar A}}} \right) = 1 - 0,0375 = 0,9625\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP