Câu hỏi:

25/01/2025 645

Một ngân hàng đề thi có 20 hạng mục, mỗi hạng mục có 10 câu hỏi. Đề thi có 20 câu hỏi tương ứng 20 hạng mục sao cho mỗi hạng mục có đúng 1 câu hỏi. Máy tính chọn từ ngân hàng ngẫu nhiên 2 đề thi thỏa mãn tiêu chí trên. Tìm xác suất để 2 đề thi có ít nhất 3 câu hỏi trùng nhau. (Kết quả làm tròn đến hàng phần nghìn.)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử đề 1 đã được máy tính chọn ra. Ta xét xác suất để đề 2 giống đề 1

Ở mỗi hạng mục, xác suất để câu hỏi của 2 đề giống nhau và khác nhau lần lượt là 0,1 và 0,9.

Xác suất của biến cố đối:

Xác suất để 2 đề không trùng nhau câu hỏi nào là \[0,{9^{20}}\]

Xác suất để 2 đề trùng nhau đúng 1 câu hỏi là \[{\rm{C}}_{20}^1.0,1.0,{9^{19}}\]

Xác suất để 2 đề trùng nhau đúng 2 câu hỏi là \[{\rm{C}}_{20}^2.0,{1^2}.0,{9^{18}}\]

Xác suất để 2 đề trùng nhau từ 3 câu hỏi trở lên là \[1 - \left( {0,{9^{20}} + {\rm{C}}_{20}^1.0,1.0,{9^{19}} + {\rm{C}}_{20}^2.0,{1^2}.0,{9^{18}}} \right)\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số phần tử của không gian mẫu \[{\rm{\Omega }}\] là \[\left| {\rm{\Omega }} \right|{\rm{ = C}}_{\rm{9}}^{\rm{5}}{\rm{ = 126}}\]

Gọi A là biến cố “Trong 5 thẻ được rút có các thẻ ghi số 1,2,3”. Ta có: \[\left| {\rm{A}} \right|{\rm{ = C}}_{\rm{6}}^{\rm{2}}{\rm{ = 15}}\]

Suy ra \[{\rm{P(A) = }}\frac{{\left| {\rm{A}} \right|}}{{\left| {\rm{\Omega }} \right|}}{\rm{ = }}\frac{{{\rm{15}}}}{{{\rm{126}}}}{\rm{ = }}\frac{{\rm{5}}}{{{\rm{42}}}}\]

Đáp án cần chọn là: D

Lời giải

Gọi A là biến cố: “Có ít nhất một viên trúng vòng 10”.

Khi đó biến cố đối của biến cố A là: \[{\rm{\bar A}}\]: “Không có viên nào trúng vòng 10”.

\[ \Rightarrow {\rm{P}}\left( {{\rm{\bar A}}} \right) = \left( {1 - 0,75} \right).\left( {1 - 0,85} \right) = 0,0375\]

\[ \Rightarrow {\rm{P}}\left( {\rm{A}} \right) = 1 - {\rm{P}}\left( {{\rm{\bar A}}} \right) = 1 - 0,0375 = 0,9625\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP