Một ngân hàng đề thi có 20 hạng mục, mỗi hạng mục có 10 câu hỏi. Đề thi có 20 câu hỏi tương ứng 20 hạng mục sao cho mỗi hạng mục có đúng 1 câu hỏi. Máy tính chọn từ ngân hàng ngẫu nhiên 2 đề thi thỏa mãn tiêu chí trên. Tìm xác suất để 2 đề thi có ít nhất 3 câu hỏi trùng nhau. (Kết quả làm tròn đến hàng phần nghìn.)
Quảng cáo
Trả lời:

Giả sử đề 1 đã được máy tính chọn ra. Ta xét xác suất để đề 2 giống đề 1
Ở mỗi hạng mục, xác suất để câu hỏi của 2 đề giống nhau và khác nhau lần lượt là 0,1 và 0,9.
Xác suất của biến cố đối:
Xác suất để 2 đề không trùng nhau câu hỏi nào là \[0,{9^{20}}\]
Xác suất để 2 đề trùng nhau đúng 1 câu hỏi là \[{\rm{C}}_{20}^1.0,1.0,{9^{19}}\]
Xác suất để 2 đề trùng nhau đúng 2 câu hỏi là \[{\rm{C}}_{20}^2.0,{1^2}.0,{9^{18}}\]
Xác suất để 2 đề trùng nhau từ 3 câu hỏi trở lên là \[1 - \left( {0,{9^{20}} + {\rm{C}}_{20}^1.0,1.0,{9^{19}} + {\rm{C}}_{20}^2.0,{1^2}.0,{9^{18}}} \right)\]
Đáp án cần chọn là: D
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số phần tử của không gian mẫu \[{\rm{\Omega }}\] là \[\left| {\rm{\Omega }} \right|{\rm{ = C}}_{\rm{9}}^{\rm{5}}{\rm{ = 126}}\]
Gọi A là biến cố “Trong 5 thẻ được rút có các thẻ ghi số 1,2,3”. Ta có: \[\left| {\rm{A}} \right|{\rm{ = C}}_{\rm{6}}^{\rm{2}}{\rm{ = 15}}\]
Suy ra \[{\rm{P(A) = }}\frac{{\left| {\rm{A}} \right|}}{{\left| {\rm{\Omega }} \right|}}{\rm{ = }}\frac{{{\rm{15}}}}{{{\rm{126}}}}{\rm{ = }}\frac{{\rm{5}}}{{{\rm{42}}}}\]
Đáp án cần chọn là: D
Lời giải
S là tập hợp của tất cả các số tự nhiên gồm 3 chữ số phân biệt được chọn từ các chữ số 1, 2, 3, 4, 5, 6, 7.
Suy ra \[\left| {\rm{S}} \right| = 7.6.5 = 210\]
Chọn ngẫu nhiên một số trong tập S ta có \[\left| {\rm{\Omega }} \right| = \left| {\rm{S}} \right| = 210\]
Gọi A là biến cố chọn được số chẵn. Ta có: \[\left| {\rm{A}} \right| = 3.6.5 = 90\]
Vậy \[{\rm{P(A) = }}\frac{{\left| {\rm{A}} \right|}}{{\left| {\rm{\Omega }} \right|}}{\rm{ = }}\frac{{{\rm{90}}}}{{{\rm{210}}}}{\rm{ = }}\frac{{\rm{3}}}{{\rm{7}}}\]
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.