Câu hỏi:

15/02/2025 220

Cho \(\Delta ABC\) có đường trung tuyến \(AM\), đường phân giác của \(\widehat {AMB}\) cắt \(AB\)\(D\), đường phân giác của \(\widehat {AMC}\) cắt \(AC\)\(E\).

a) Chứng minh \(\frac{{AM}}{{BM}} = \frac{{AD}}{{BD}}\).

b) Chứng minh \(DE\parallel BC\)\(AD.AC = AE.AB\).

c) Gọi \(I\) là trung điểm của \(DE\). Chứng minh ba điểm \(A,I,M\) thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Cho tam giác ABC có đường trung tuyến AM , đường phân giác của góc AMB  cắt  AB ở D (ảnh 1)

a) Xét \(\Delta ABM\)\(MD\) là phân giác của \(\widehat {AMB}\) nên \(\frac{{AM}}{{BM}} = \frac{{AD}}{{BD}}\) (tính chất đường phân giác trong tam giác).

b) Xét \(\Delta AMC\)\(ME\) là phân giác của \(\widehat {AMC}\) nên \(\frac{{AM}}{{BM}} = \frac{{AE}}{{CE}}\) (tính chất đường phân giác trong tam giác)

Từ phần a) ta có: \(\frac{{AM}}{{BM}} = \frac{{AD}}{{BD}}\) nên suy ra \(\frac{{AD}}{{BD}} = \frac{{AE}}{{CE}}\).

Do đó, \(DE\parallel BC\) (định lí Thalès đảo)

Ta có: \(\Delta ABC\)\(DE\parallel BC\) nên theo định lí Thalès ta có: \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}\).

Suy ra \(AD.AC = AE.AB\) (đpcm).

c) Gọi \(I'\) là giao điểm của \(AM\)\(DE\).

Ta có \(DI'\parallel BM\) suy ra \(\frac{{DI' & }}{{BM}} = \frac{{AI'}}{{AM}}\) (Hệ quả của định lí Thalès) (1)

         \(EI'\parallel CM\) suy ra \(\frac{{EI' & }}{{CM}} = \frac{{AI'}}{{AM}}\) (Hệ quả của định lí Thalès) (2)

Từ (1) và (2) suy ra \(\frac{{DI' & }}{{BM}} = \frac{{EI'}}{{CM}}\)\(CM = BM\) (\(AM\) là đường trung tuyến của \(\Delta ABC\))

Suy ra \(DI' = EI'\).

Do đó \(I'\) trùng với \(I\).

Suy ra ba điểm \(A,I,M\) thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét phương trình hoành độ giao điểm: \(2x = - x + 3\) suy ra \(2x + x = 3\) hay \(3x = 3\).

Do đó, \(x = 1.\)

Thay \(x = 1\) vào \(\left( d \right):y = 2x\) ta được \(y = 2\).

Vậy giao điểm của hai đường thẳng \(\left( d \right)\)\(\left( {d'} \right)\)\(A\left( {1;2} \right)\).

b) Thay \(y = 0\) vào \(\left( {d'} \right)\), ta được: \( - x + 3 = 0\) hay \(x = 3\).

Vậy giao điểm của \(\left( {d'} \right)\) với trục \(Ox\)\(B\left( {3;0} \right)\).

Ta có đồ thị sau:

Cho hàm số (d) ; y = 2x  và (d') : y= -x + 3 . a) Tìm giao điểm A  của hai đường thẳng  (d) và (d') . (ảnh 1)

Từ đồ thị, ta có \(OB = 3\).

Chiều cao từ \(A\) xuống \(OB\) chính là \(2\).

Vậy diện tích của tam giác \(AOB\)\(\frac{1}{2}.2.3 = 3\) (đvdt).

Lời giải

\(\frac{{x - 1}}{{2015}} + \frac{{x - 3}}{{2013}} = \frac{{x - 5}}{{2011}} + \frac{{x - 7}}{{2009}}\)

\(\frac{{x - 1}}{{2015}} - 1 + \frac{{x - 3}}{{2013}} - 1 = \frac{{x - 5}}{{2011}} - 1 + \frac{{x - 7}}{{2009}} - 1\)

\(\frac{{x - 2016}}{{2015}} + \frac{{x - 2016}}{{2013}} = \frac{{x - 2016}}{{2011}} + \frac{{x - 2016}}{{2009}}\)

\(\frac{{x - 2016}}{{2015}} + \frac{{x - 2016}}{{2013}} - \frac{{x - 2016}}{{2011}} - \frac{{x - 2016}}{{2009}} = 0\)

\(\left( {x - 2016} \right)\left( {\frac{1}{{2015}} + \frac{1}{{2013}} - \frac{1}{{2011}} - \frac{1}{{2009}}} \right) = 0\)

Nhận thấy \(\left( {\frac{1}{{2015}} + \frac{1}{{2013}} - \frac{1}{{2011}} - \frac{1}{{2009}}} \right) \ne 0\) nên \(x - 2016 = 0\) suy ra \(x = 2016\).

Vậy \(x = 2016\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP