Câu hỏi:
15/02/2025 272Cho tam giác \(MNP\) có \(H \in MN;K \in MP\). Điều kiện không kết luận được \(HK\parallel NP\) là
Quảng cáo
Trả lời:
Đáp án đúng là: C
Theo định lí Thalès đảo nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.
Xét tam giác \(MNP\), nếu có một trong các tỉ số \(\frac{{MH}}{{MN}} = \frac{{MK}}{{MP}};\frac{{MH}}{{HN}} = \frac{{MK}}{{KP}};\frac{{NH}}{{MN}} = \frac{{PK}}{{MP}}\) thì \(HK\parallel NP\) (định lí Thalès đảo)
Vậy chọn phương án C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Thay \(x = - 1,y = 1\) vào đường thẳng \(\left( d \right)\), ta được:
\(\left( {m - 2} \right)\left( { - 1} \right) + 2 = 1\) hay \( - m + 4 = 1\) suy ra \(m = 3\).
Vậy với \(m = 3\) ta được đường thẳng \(\left( d \right):y = x + 2\).
b) Gọi đường thẳng \(\left( {d'} \right):y = ax + b\).
Theo đề, đường thẳng \(\left( {d'} \right)\) song song với đường thẳng \(\left( d \right)\) nên \(a = 1\).
Lúc này, ta có: \(\left( {d'} \right):y = x + b\).
Mà \(\left( {d'} \right)\) cắt trục tung tại điểm có tung độ bằng \(3\) nên \(\left( {d'} \right)\) đi qua điểm \(B\left( {0;3} \right)\).
Thay \(x = 0,y = 3\) vào \(\left( {d'} \right)\), ta được \(0 + b = 3\) suy ra \(b = 3.\)
Vậy \(\left( {d'} \right):y = x + 3.\)
Lời giải
Hướng dẫn giải
a) Áp dụng định lí Pythagore vào tam giác \(ABC\) vuông tại \(A\), ta có:
\(A{B^2} + A{C^2} = B{C^2}\)
\({8^2} + {6^2} = B{C^2}\)
\(B{C^2} = 100\) suy ra \(BC = 10{\rm{ cm}}\).
Có \(M,N\) là trung điểm của \(AB,AC\) nên \(MN\) là đường trung bình của tam giác \(ABC\).
Do đó, \(MN = \frac{1}{2}BC = \frac{1}{2}.10 = 5{\rm{ cm}}{\rm{.}}\)
b) Có \(AD\) là phân giác của \(\widehat {BAC}\) nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\) suy ra \(\frac{{BD}}{{DC + BD}} = \frac{{AB}}{{AC + AB}}\) suy ra \(\frac{{BD}}{{10}} = \frac{6}{{14}}\).
Do đó, \(BD = \frac{{10.6}}{{14}} = \frac{{30}}{7}{\rm{ cm}}{\rm{.}}\)
c) Có \(AD\) là phân giác của \(\widehat {BAC}\) nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\).
Lại có \(MN\parallel BC\) suy ra \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) hay \(\frac{{AM}}{{AN}} = \frac{{AB}}{{AC}}\) (2).
Từ (1) và (2) suy ra \(\frac{{AM}}{{AN}} = \frac{{DB}}{{DC}}\) hay \(BD.AN = AM.DC\) (đpcm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận