Câu hỏi:
15/02/2025 321
Cho hình vẽ bên, biết \(MN\parallel BC,NP\parallel AB\).
Khẳng định nào sau đây là sai?
Cho hình vẽ bên, biết \(MN\parallel BC,NP\parallel AB\).

Khẳng định nào sau đây là sai?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Xét \(\Delta ABC\) với \(MN\parallel BC\), ta có:
\(\frac{{AM}}{{AB}} = \frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\) (hệ quả của định lí Thalès). Suy ra \(\frac{{AM}}{{MN}} = \frac{{AB}}{{BC}}\).
Do đó A là khẳng định đúng.
Xét \(\Delta ABC\) với \(NP\parallel AB\), ta có:
\(\frac{{AN}}{{AC}} = \frac{{BP}}{{BC}}\) (hệ quả của định lí Thalès) do đó khẳng định B đúng.
\(\frac{{CP}}{{BP}} = \frac{{CN}}{{AN}}\) (định lí Thalès). Do đó, khẳng định C đúng.
\(\frac{{CN}}{{AC}} = \frac{{PN}}{{AB}}\) (định lí Thalès).
Ta có: \(AN \ne CN\) nên \(\frac{{AN}}{{AC}} \ne \frac{{CN}}{{AC}}.\)
Mà \(\frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\) và \(\frac{{CN}}{{AC}} = \frac{{PN}}{{AB}}\) nên \(\frac{{MN}}{{BC}} \ne \frac{{PN}}{{AB}}\). Do đó, khẳng định D là sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Thay \(x = - 1,y = 1\) vào đường thẳng \(\left( d \right)\), ta được:
\(\left( {m - 2} \right)\left( { - 1} \right) + 2 = 1\) hay \( - m + 4 = 1\) suy ra \(m = 3\).
Vậy với \(m = 3\) ta được đường thẳng \(\left( d \right):y = x + 2\).
b) Gọi đường thẳng \(\left( {d'} \right):y = ax + b\).
Theo đề, đường thẳng \(\left( {d'} \right)\) song song với đường thẳng \(\left( d \right)\) nên \(a = 1\).
Lúc này, ta có: \(\left( {d'} \right):y = x + b\).
Mà \(\left( {d'} \right)\) cắt trục tung tại điểm có tung độ bằng \(3\) nên \(\left( {d'} \right)\) đi qua điểm \(B\left( {0;3} \right)\).
Thay \(x = 0,y = 3\) vào \(\left( {d'} \right)\), ta được \(0 + b = 3\) suy ra \(b = 3.\)
Vậy \(\left( {d'} \right):y = x + 3.\)
Lời giải
Hướng dẫn giải

a) Áp dụng định lí Pythagore vào tam giác \(ABC\) vuông tại \(A\), ta có:
\(A{B^2} + A{C^2} = B{C^2}\)
\({8^2} + {6^2} = B{C^2}\)
\(B{C^2} = 100\) suy ra \(BC = 10{\rm{ cm}}\).
Có \(M,N\) là trung điểm của \(AB,AC\) nên \(MN\) là đường trung bình của tam giác \(ABC\).
Do đó, \(MN = \frac{1}{2}BC = \frac{1}{2}.10 = 5{\rm{ cm}}{\rm{.}}\)
b) Có \(AD\) là phân giác của \(\widehat {BAC}\) nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\) suy ra \(\frac{{BD}}{{DC + BD}} = \frac{{AB}}{{AC + AB}}\) suy ra \(\frac{{BD}}{{10}} = \frac{6}{{14}}\).
Do đó, \(BD = \frac{{10.6}}{{14}} = \frac{{30}}{7}{\rm{ cm}}{\rm{.}}\)
c) Có \(AD\) là phân giác của \(\widehat {BAC}\) nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\).
Lại có \(MN\parallel BC\) suy ra \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) hay \(\frac{{AM}}{{AN}} = \frac{{AB}}{{AC}}\) (2).
Từ (1) và (2) suy ra \(\frac{{AM}}{{AN}} = \frac{{DB}}{{DC}}\) hay \(BD.AN = AM.DC\) (đpcm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.