Câu hỏi:
15/02/2025 250Một miếng đất hình chữ nhật có chiều dài hơn chiều rộng \(25{\rm{ m}}\). Nếu giảm chiều dài đi \(25{\rm{ m}}\) thì diện tích sẽ nhỏ hơn diện tích ban đầu là \(1{\rm{ }}000{\rm{ }}{{\rm{m}}^2}\). Gọi chiều dài ban đầu của miếng dất là \(x\) \(\left( {x > 25,{\rm{ m}}} \right).\)
a) Chiều rộng ban đầu của miếng đất là \(x - 25{\rm{ }}\left( {\rm{m}} \right)\).
b) Khi chiều dài giảm đi \(25{\rm{ m}}\)ta được chiều dài mới bằng chiều rộng ban đầu của mảnh đất.
c) Phương trình mô tả bài toán là \(x\left( {x - 25} \right) - \left( {x - 25} \right)\left( {x - 25} \right) = 1{\rm{ }}000\).
d) Diện tích ban đầu của mảnh đất là \({\rm{2 600 }}\left( {{{\rm{m}}^2}} \right)\).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là: a) Đ b) Đ c) Đ d) Đ
Gọi chiều dài ban đầu của miếng dất là \(x\) \(\left( {x > 25,{\rm{ m}}} \right).\)
Chiều rộng ban đầu của miếng đất là \(x - 25{\rm{ }}\left( {\rm{m}} \right)\).
Chiều dài của miếng dất sau khi giảm là \(x - 25{\rm{ }}\left( {\rm{m}} \right)\).
Diện tích ban đầu của mảnh đất là: \(x\left( {x - 25} \right){\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Diện tích sau khi giảm chiều dài của mảnh đất là: \(\left( {x - 25} \right)\left( {x - 25} \right){\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Theo đề, diện tích sau khi giảm sẽ nhỏ hơn diện tích ban đầu là \(1{\rm{ }}000{\rm{ }}{{\rm{m}}^2}\) nên ta có phương trình:
\(x\left( {x - 25} \right) - \left( {x - 25} \right)\left( {x - 25} \right) = 1{\rm{ 000 }}\left( {{{\rm{m}}^2}} \right)\)
Giải phương trình, ta có:
\(x\left( {x - 25} \right) - \left( {x - 25} \right)\left( {x - 25} \right) = 1{\rm{ 000}}\)
\({x^2} - 25x - {x^2} + 50x - 625 = 1{\rm{ 000}}\)
\(25x = 1{\rm{ }}625\)
\(x = 65\) (thỏa mãn).
Do đó, diện tích ban đầu của miếng đất là \(65.\left( {65 - 25} \right) = 2{\rm{ }}600{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = 8{\rm{ cm,}}\) \(AC = 6{\rm{ cm}}\). Có \(M,N\) là trung điểm của \(AB,AC\).
a) Tính độ dài \(BC,MN\).
b) Vẽ phân giác \(AD\) với \(D \in BC\). Tính độ dài \(BD\).
c) Chứng minh rằng \(BD.AN = AM.DC.\)
Câu 2:
Đường thẳng \(y = - 3x - 2022\) tạo với trục \(Ox\) một góc như thế nào?
Câu 3:
Tính tổng tất cả các giá trị của \(m\) để phương trình \(\left( {{m^2} - 4} \right)x = m - 2\) vô nghiệm.
Câu 4:
Cho hàm số \(y = \left( {m - 2} \right)x + 2\) có đồ thị là đường thẳng \(\left( d \right)\).
a) Xác định \(m\) để đường thẳng đi qua điểm \(A\left( { - 1;1} \right).\)
b) Với \(m\) vừa tìm được ở câu a) hãy tìm phương trình đường thẳng \(\left( {d'} \right)\) song song với đường thẳng \(\left( d \right)\) và \(\left( {d'} \right)\) cắt trục tung tại điểm có tung độ bằng \(3\).
Câu 5:
Đồ thị hàm số \(y = ax{\rm{ }}\left( {a \ne 0} \right)\) là một đường thẳng luôn đi qua
Câu 6:
Cho ba đường thẳng \(\left( d \right):y = 3x + 8\), \(\left( {d'} \right):y = 2x + 3\) và \(\left( {d''} \right):y = \left( {2m - 1} \right)x + m - 3\). Xác định giá trị của tham số \(m\) để ba đường thẳng đồng quy.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận