Câu hỏi:
17/03/2025 160(1,5 điểm) Cho tam giác \(ABC\) nhọn \(\left( {AB < AC} \right)\), đường cao \(AD{\rm{ }}\left( {D \in BC} \right)\). Gọi \(E,F\) lần lượt là hình chiếu của \(D\) trên \(AB\) và \(AC\).
a) Chứng minh \(AE.AB = A{D^2} = AF.AC\) và \(\widehat {AFE} = \widehat {ABC}\).
Quảng cáo
Trả lời:
Xét \(\Delta AED\) và \(\Delta ADB\) có:
\(\widehat A\) chung
\(\widehat {AED} = \widehat {ADB} = 90^\circ \)
Suy ra (g.g)
Suy ra \(\frac{{AE}}{{AD}} = \frac{{AD}}{{AB}}\), suy ra \(AE.AB = A{D^2}\) (1)
Xét \(\Delta AFD\) và \(\Delta ADC\) có:
\(\widehat A\) chung
\(\widehat {AFD} = \widehat {ADC} = 90^\circ \) (gt)
Suy ra (g.g)
Suy ra \(\frac{{AF}}{{AD}} = \frac{{AD}}{{AC}}\) suy ra \(AF.AC = A{D^2}\) (2)
Từ (1) và (2) suy ra \(AE.AB = A{D^2} = AF.AC.\)
Do đó, \(\frac{{AE}}{{AF}} = \frac{{AC}}{{AB}}\).
Xét \(\Delta AEF\) và \(\Delta ACB\)có:
\(\widehat A\) chung
\(\frac{{AE}}{{AF}} = \frac{{AC}}{{AB}}\) (cmt)
Suy ra (c.g.c)
Suy ra \(\widehat {AEF} = \widehat {ACB}\).
Câu hỏi cùng đoạn
Câu 2:
b) Gọi \(I\) là giao điểm của \(FE\) và tia \(CB\). Chứng minh \(I{D^2} = IE.IF\).
Lời giải của GV VietJack
Vì (cmt) suy ra \(\widehat {AEF} = \widehat {ACB}\).
Mà \(\widehat {AEF} = \widehat {IEB}\) (2 góc đối đỉnh)
Suy ra \(\widehat {ACB} = \widehat {IEB}\) (3)
Ta có: \(\widehat {IDF} = \widehat {DFC} + \widehat {ACB}\) (góc ngoài tam giác \(DFC\))
Suy ra \(\widehat {IDF} = 90^\circ + \widehat {ACB}\) (4)
Và \(\widehat {IED} = \widehat {IEB} + \widehat {BED} = \widehat {IEB} + 90^\circ \) (5)
Từ (3), (4), (5) suy ra \(\widehat {IDF} = \widehat {IED}\).
Xét \(\Delta IED\) và \(\Delta IDF\) có:
\(\widehat I\) chung
\(\widehat {IED} = \widehat {IDF}\) (cmt)
Suy ra (g.g)
Suy ra \(\frac{{IE}}{{ID}} = \frac{{ID}}{{IF}}\) nên \(I{D^2} = IE.IF\) (đpcm)
Câu 3:
c) Gọi \(H\) là trực tâm của \(\Delta ABC,\) tia \(HB\) cắt \(EF\) tại \(K.\) Chứng minh \(DK \bot BH.\)
Lời giải của GV VietJack
Vì \(H\) là trực tâm của \(\Delta ABC\) nên \(BH \bot AC\).
Mà \(DF \bot AC\) nên \(BH\parallel DF\), suy ra \(\widehat {EFD} = \widehat {EKB}\) (hai góc đồng vị) (6)
Theo câu b) ta có nên \(\widehat {IDE} = \widehat {IFD}\) suy ra \(\widehat {BDE} = \widehat {EFD}\) (7)
Từ (6) và (7) suy ra \(\widehat {EKB} = \widehat {BDE}\).
Gọi \(L\) là giao điểm của \(BK\) và \(ED\).
Xét \(\Delta EKL\) và \(\Delta BDL\) có:
\(\widehat {EKL} = \widehat {LDB}\) (cmt)
\(\widehat {ELK} = \widehat {DLB}\) (đối đỉnh)
Suy ra (g.g)
Suy ra \(\frac{{EL}}{{LB}} = \frac{{KL}}{{LD}}\).
Xét \(\Delta EBL\) và \(\Delta KDL\) có: \(\frac{{EL}}{{LB}} = \frac{{KL}}{{LD}}\) (cmt) và \(\widehat {ELB} = \widehat {DLK}\) (2 góc đối đỉnh)
Suy ra (g.g)
Suy ra \(\widehat {DKL} = \widehat {BEL} = 90^\circ \) hay \(DK \bot BH\) tại \(K\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 287
Đã bán 230
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
A. TRẮC NGHIỆM (7,0 điểm)
Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn
Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.
Đồ thị hàm số \(y = ax{\rm{ }}\left( {a \ne 0} \right)\) là một đường thẳng luôn đi qua
Câu 2:
Gieo một con xúc xắc cân đối đồng chất hai lần. Tính xác suất của biến cố \(B\): “Tổng số chấm sau hai lần gieo bằng \(8\)”. (Kết quả viết dưới dạng số thập phân, làm tròn đến hàng phần trăm)
Câu 4:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận