Câu hỏi:

17/03/2025 135

(1,5 điểm) Cho hình bình hành \(ABCD\), điểm \(F\) trên cạnh \(BC\). Tia \(AF\) cắt \(BD\)\(DC\) lần lượt ở \(E\)\(G\). Chứng minh rằng:

a) ΔDEAΔBEF và ΔDGEΔBAE

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)  và . (ảnh 1)

Ta có: \(BF\parallel AD\) (gt)

Suy ra \(\widehat {EDA} = \widehat {EBF}\) (so le trong)

           \(\widehat {EAD} = \widehat {EFB}\) (so le trong)

Xét \(\Delta DEA\)\(\Delta BEF\), có:

\(\widehat {EDA} = \widehat {EBF}\) (so le trong)

\(\widehat {EAD} = \widehat {EFB}\) (so le trong)

Do đó, (g.g)

Lại có \(AB\parallel GD\) (gt) nên \(\widehat {DGE} = \widehat {BAE}\) (so le trong)

Xét \(\Delta DGE\)\(\Delta BAE\), có:

\(\widehat {DGE} = \widehat {BAE}\) (so le trong)

\(\widehat {DEG} = \widehat {BEA}\) (đối đỉnh)

Suy ra (g.g)

Câu hỏi cùng đoạn

Câu 2:

b) \(A{E^2} = EF.EG\).

Xem lời giải

verified Lời giải của GV VietJack

Ta có: (cmt) nên \[\frac{{AE}}{{EF}} = \frac{{DE}}{{BE}}\] (1)

 (cmt) nên \[\frac{{GE}}{{EA}} = \frac{{DE}}{{BE}}\] (2)

Từ (1) và (2) suy ra \[\frac{{GE}}{{EA}} = \frac{{AE}}{{FE}}\] nên \(A{E^2} = EF.EG\) (đpcm).

Câu 3:

c) \(BF.DG\) không đổi khi \(F\) thay đổi trên \(BC.\)

Xem lời giải

verified Lời giải của GV VietJack

Từ câu a), ta có: nên \[\frac{{AD}}{{BF}} = \frac{{DE}}{{BE}}\] (3)

 nên \[\frac{{GD}}{{BA}} = \frac{{DE}}{{BE}}\] (4)

Từ (3) và (4) suy ra \[\frac{{GD}}{{BA}} = \frac{{DA}}{{BF}}\] nên \[BF.DG = AD.BA\].

Do \(ABCD\) là hình bình hành nên \[AD.BA\] không đổi.

Do đó, \[BF.DG\] không đổi khi \[F\] thay đổi trên \[BC.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Ta có đồ thị hàm số \(y = 2x + 1\) và đồ thị hàm số \(y = ax + 3\) là hai đường thẳng song song do đó hệ số góc của hai đường thẳng bằng nhau và bằng \(2.\)

Vậy \(a = 2.\)

Lời giải

Đáp án: \(1\)

Gọi đường thẳng cần tìm là \(\left( d \right):y = ax + b\).

Ta có: \(A\left( {1;2} \right) \in \left( d \right)\) nên \(a + b = 2\) suy ra \(b = 2 - a\) (1)

           \(B\left( {3;4} \right) \in \left( d \right)\) nên \(3a + b = 4\) suy ra \(b = 4 - 3a\) (2)

Từ (1) và (2) ta có: \(2 - a = 4 - 3a\) suy ra \(2a = 2\) nên \(a = 1\).

Vậy hệ số góc của đường thẳng đó là \(1.\)

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP