Câu hỏi:

17/03/2025 82

Cho hình vẽ sau:

Khẳng định nào sau đây là sai? (ảnh 1) 

Biết các điểm \(A,B,C,D\) lần lượt là trung điểm các đoạn thẳng \(IA',IB',IC',ID'\). Khẳng định nào sau đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Các đoạn thẳng \(AA',BB',CC',DD'\) cùng đi qua một điểm \(I\).

\(A,B,C,D\) lần lượt là trung điểm các đoạn thẳng \(IA',IB',IC',ID'\) nên ta có: \(\frac{{IA}}{{IA'}} = \frac{{IB}}{{IB'}} = \frac{{IC}}{{IC'}} = \frac{{ID}}{{ID'}}.\)

Do đó, hai tứ giác \(ABCD\)\(A'B'C'D'\) đồng dạng phối cảnh, điểm \(I\) là tâm đồng dạng phối cảnh.

Hai đoạn thẳng \(AB\)\(A'B'\) đồng dạng phối cảnh, điểm \(I\) là tâm đồng dạng phối cảnh.

Hai đoạn thẳng \(BD\)\(B'D'\) đồng dạng phối cảnh, điểm \(I\) là tâm đồng dạng phối cảnh.

Vậy khẳng định sai là “Hai đoạn thẳng \(BB'\)\[AA'\] đồng dạng phối cảnh, điểm \(I\) là tâm đồng dạng phối cảnh”.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(a = 2024 - x;{\rm{ }}b = 2026 - x;{\rm{ }}c = 2x - 4050\).

Ta có: \(a + b + c = 2024 - x + 2026 - x + 2x - 4050 = 0\)

Suy ra \(\left( {a + b} \right) = - c\) nên \({\left( {a + b} \right)^3} = - {c^3}\).

Khi đó, \({a^3} + {b^3} + {c^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) + {c^3} = - {c^3} + 3abc + {c^3} = 3abc\).

Do đó, \({\left( {2024 - x} \right)^3} + {\left( {2026 - x} \right)^3} + {\left( {2x - 4050} \right)^3} = 0\)

             \(3\left( {2024 - x} \right)\left( {2026 - x} \right)\left( {2x - 4050} \right) = 0\)

Suy ra \(2024 - x = 0\) hoặc \(2026 - x = 0\) hoặc \(2x - 4050 = 0\).

Do đó, \(x = 2024\) hoặc \(x = 2026\) hoặc \(x = 2025.\)

Vậy nghiệm của phương trình là \(S = \left\{ {2024;2025;2026} \right\}.\)

Lời giải

Sai

Số kết quả thuận lợi cho biến cố “Chiếc bút lấy ra là bút mực xanh” là: \(30 - 10 = 20\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Gieo một con xúc xắc cân đối đồng chất. Gọi \(A\) là biến cố “Gieo được mặt có số chấm là số lẻ”. Số kết quả thuận lợi là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Điểm \(M\left( { - 2;2} \right)\) thuộc đồ thị của hàm số nào dưới đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay