Câu hỏi:

17/03/2025 297 Lưu

(1,5 điểm) Cho tam giác \(ABC\) vuông tại \(A\) \(\left( {AB < AC} \right)\), đường cao \(AH\) \(\left( {H \in BC} \right)\).

a) Chứng minh và \(AB.AH = AC.HB.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Chứng minh  và \(AB.AH = AC.HB.\) (ảnh 1)

Xét \(\Delta ABC\)\(\Delta BHA\) có: \(\widehat {BAC} = \widehat {BHA} = 90^\circ \) (gt); \(\widehat {CBA}\) chung (gt)

Suy ra (g.g)

Do đó, \(\frac{{AB}}{{HB}} = \frac{{AC}}{{HA}}\) nên \(AB.AH = AC.HB\) (đpcm).

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh rằng \(A{H^2} = BH.CH.\)

Xem lời giải

verified Giải bởi Vietjack

Vì (cmt) suy ra \(\widehat {ACB} = \widehat {HAB}\) (hai góc tương ứng)

Xét \(\Delta BHA\)\(\Delta CHA\), có:

\(\widehat {HAB} = \widehat {HCA}\) (cmt) và \(\widehat {AHB} = \widehat {CHA} = 90^\circ \) (gt)

Suy ra (g.g)

Suy ra \(\frac{{AH}}{{CH}} = \frac{{HB}}{{HA}}\) hay \(A{H^2} = BH.CH\).

Câu 3:

c) Gọi \(M\)\(N\) lần lượt là trung điểm của \(AB\)\(BC.\) Chứng minh: \(\frac{1}{4}CH.CB = M{N^2}.\)

Xem lời giải

verified Giải bởi Vietjack

\(M\)\(N\) lần lượt là trung điểm của \(AB\)\(BC\) nên \(MN\) là đường trung bình của \(\Delta ABC\).

Xét \(\Delta ABC\)\(\Delta HAC\) có:

\(\widehat {CAB} = \widehat {AHC} = 90^\circ \) (gt)

\(\widehat {ACB}\) chung (gt)

Do đó, (g.g)

Suy ra \(\frac{{AC}}{{CH}} = \frac{{CB}}{{CA}}\) hay \(A{C^2} = CH.CB\).

Lại có \(MN\) là đường trung bình của \(\Delta ABC\) nên \(MN = \frac{1}{2}AC\) hay \(AC = 2MN\).

Suy ra \(4M{N^2} = CH.CB\) hay \(\frac{1}{4}CH.CB = M{N^2}\) (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(a = 2024 - x;{\rm{ }}b = 2026 - x;{\rm{ }}c = 2x - 4050\).

Ta có: \(a + b + c = 2024 - x + 2026 - x + 2x - 4050 = 0\)

Suy ra \(\left( {a + b} \right) = - c\) nên \({\left( {a + b} \right)^3} = - {c^3}\).

Khi đó, \({a^3} + {b^3} + {c^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) + {c^3} = - {c^3} + 3abc + {c^3} = 3abc\).

Do đó, \({\left( {2024 - x} \right)^3} + {\left( {2026 - x} \right)^3} + {\left( {2x - 4050} \right)^3} = 0\)

             \(3\left( {2024 - x} \right)\left( {2026 - x} \right)\left( {2x - 4050} \right) = 0\)

Suy ra \(2024 - x = 0\) hoặc \(2026 - x = 0\) hoặc \(2x - 4050 = 0\).

Do đó, \(x = 2024\) hoặc \(x = 2026\) hoặc \(x = 2025.\)

Vậy nghiệm của phương trình là \(S = \left\{ {2024;2025;2026} \right\}.\)

Lời giải

Sai

Số kết quả thuận lợi cho biến cố “Chiếc bút lấy ra là bút mực xanh” là: \(30 - 10 = 20\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(1.\)                        
B. \(2.\)                         
C. \(5.\)                         
D. \(3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = - \frac{1}{2}x + 1.\)                             
B. \(y = \frac{1}{2}x + 1.\)                                      
C. \(y = - 3x.\)             
D. \(y = - 2x + 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP