Câu hỏi:

17/03/2025 524 Lưu

(1,5 điểm) Cho hình chữ nhật \(ABCD\). Kẻ \(AH \bot BD\) tại \(H.\)

a) Chứng minh rằng ΔABDΔHBA.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Chứng minh rằng . (ảnh 1)

\(ABCD\) là hình chữ nhật nên \(\widehat {BAD} = 90^\circ \).

\(AH \bot BD\) tại \(H\) nên \(\widehat {BAD} = \widehat {AHB} = 90^\circ \).

Xét \(\Delta ABD\)\(\Delta HBA\), có:

\(\widehat {BAD} = \widehat {AHB} = 90^\circ \) (cmt)

\(\widehat {ABD} = \widehat {ABH}\)

Do đó, (g.g)

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh rằng \(B{C^2} = BD.DH.\)

Xem lời giải

verified Giải bởi Vietjack

Xét \(\Delta ABD\)\(\Delta HAD\) có:

\(\widehat {BAD} = \widehat {AHD} = 90^\circ \)

\(\widehat {BDA} = \widehat {ADH}\)

Do đó, (g.g)

Suy ra \(\frac{{AD}}{{DH}} = \frac{{BD}}{{AD}}\) hay \[A{D^2} = BD.DH\].

\[AD = BC\] (do \[ABCD\] là hình chữ nhật)

Suy ra \[B{C^2} = BD.DH\] (đpcm)

Câu 3:

c) Kẻ \(DE\) là đường phân giác của tam giác \(ABD\). Gọi \(I\) là giao điểm của \(DE\)\(AH\). Chứng minh \(\Delta AIE\) cân và \(A{E^2} = IH.EB.\)

Xem lời giải

verified Giải bởi Vietjack

\(DE\) là đường phân giác của tam giác \(ABD\) nên \(\widehat {ADE} = \widehat {EDB}\).

Ta có: (cmt) nên \(\widehat {DBA} = \widehat {HAD}\) (hai góc tương ứng)

Suy ra \(\widehat {DBA} + \widehat {EDB} = \widehat {HAD} + \widehat {EDA}\) (1)

Xét \(\Delta AID\)\(\widehat {AIE} = \widehat {IAD} + \widehat {IDA} = \widehat {HAD} + \widehat {EDA}\) (tính chất góc ngoài) (2)

Xét \(\Delta DEB\)\(\widehat {AEI} = \widehat {EBD} + \widehat {BDE}\) (tính chất góc ngoài ) (3)

Từ (1), (2), (3) suy ra \(\widehat {AIE} = \widehat {AEI}\).

Do đó, \(\Delta AIE\) cân tại \(A\).

Suy ra \(AE = AI\).

Xét \(\Delta ADH\), có \(DI\) là đường phân giác nên \(\frac{{IH}}{{IA}} = \frac{{DH}}{{DA}}.\)

\(AE = AI\) (cmt) (4)

Suy ra \(\frac{{AD}}{{DH}} = \frac{{BD}}{{AD}}\), suy ra \(\frac{{AD}}{{BD}} = \frac{{DH}}{{DA}}\) (5)

Từ (4) và (5) suy ra \(\frac{{IH}}{{EA}} = \frac{{AD}}{{BD}}\) \(\left( * \right)\)

Xét \(\Delta ADB\)\(DE\) là đường phân giác nên \(\frac{{AE}}{{EB}} = \frac{{AD}}{{BD}}\)\(\left( {**} \right)\)

Từ (*) và (**) suy ra \(\frac{{IH}}{{EA}} = \frac{{AE}}{{EB}}\) hay \(A{E^2} = IH.EB\) (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(a = 2024 - x;{\rm{ }}b = 2026 - x;{\rm{ }}c = 2x - 4050\).

Ta có: \(a + b + c = 2024 - x + 2026 - x + 2x - 4050 = 0\)

Suy ra \(\left( {a + b} \right) = - c\) nên \({\left( {a + b} \right)^3} = - {c^3}\).

Khi đó, \({a^3} + {b^3} + {c^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) + {c^3} = - {c^3} + 3abc + {c^3} = 3abc\).

Do đó, \({\left( {2024 - x} \right)^3} + {\left( {2026 - x} \right)^3} + {\left( {2x - 4050} \right)^3} = 0\)

             \(3\left( {2024 - x} \right)\left( {2026 - x} \right)\left( {2x - 4050} \right) = 0\)

Suy ra \(2024 - x = 0\) hoặc \(2026 - x = 0\) hoặc \(2x - 4050 = 0\).

Do đó, \(x = 2024\) hoặc \(x = 2026\) hoặc \(x = 2025\).

Vậy nghiệm của phương trình đã cho là \(S = \left\{ {2024;2025;2026} \right\}\).

Lời giải

Đúng

a) Cửa hàng đã thu thập dữ liệu biểu diễn trong biểu đồ bằng phương pháp phỏng vấn \(1{\rm{ }}000\) khách hàng. Đây là phương pháp thu thập trực tiếp.

Câu 3

A. Số liệu rời rạc.                                              
B. Dữ liệu không là số, có thể sắp thứ tự.
C. Số liệu liên tục.                                              
D. Dữ liệu không là số, không thể sắp thứ tự.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hình 1.                     
B. Hình 2.                   
C. Hình 3.                     
D. Hình 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(5x.\)                       
B. \(x - 5.\)                    
C. \(x:5.\)                      
D. \(x + 10.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{1}{2}.\)         
B. \(1.\)                         
C. \(2.\)                         
D. \(\frac{2}{1}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP