Câu hỏi:

17/03/2025 367

(1,5 điểm) Cho hình chữ nhật \(ABCD\). Kẻ \(AH \bot BD\) tại \(H.\)

a) Chứng minh rằng ΔABDΔHBA.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh rằng . (ảnh 1)

\(ABCD\) là hình chữ nhật nên \(\widehat {BAD} = 90^\circ \).

\(AH \bot BD\) tại \(H\) nên \(\widehat {BAD} = \widehat {AHB} = 90^\circ \).

Xét \(\Delta ABD\)\(\Delta HBA\), có:

\(\widehat {BAD} = \widehat {AHB} = 90^\circ \) (cmt)

\(\widehat {ABD} = \widehat {ABH}\)

Do đó, (g.g)

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh rằng \(B{C^2} = BD.DH.\)

Xem lời giải

verified Lời giải của GV VietJack

Xét \(\Delta ABD\)\(\Delta HAD\) có:

\(\widehat {BAD} = \widehat {AHD} = 90^\circ \)

\(\widehat {BDA} = \widehat {ADH}\)

Do đó, (g.g)

Suy ra \(\frac{{AD}}{{DH}} = \frac{{BD}}{{AD}}\) hay \[A{D^2} = BD.DH\].

\[AD = BC\] (do \[ABCD\] là hình chữ nhật)

Suy ra \[B{C^2} = BD.DH\] (đpcm)

Câu 3:

c) Kẻ \(DE\) là đường phân giác của tam giác \(ABD\). Gọi \(I\) là giao điểm của \(DE\)\(AH\). Chứng minh \(\Delta AIE\) cân và \(A{E^2} = IH.EB.\)

Xem lời giải

verified Lời giải của GV VietJack

\(DE\) là đường phân giác của tam giác \(ABD\) nên \(\widehat {ADE} = \widehat {EDB}\).

Ta có: (cmt) nên \(\widehat {DBA} = \widehat {HAD}\) (hai góc tương ứng)

Suy ra \(\widehat {DBA} + \widehat {EDB} = \widehat {HAD} + \widehat {EDA}\) (1)

Xét \(\Delta AID\)\(\widehat {AIE} = \widehat {IAD} + \widehat {IDA} = \widehat {HAD} + \widehat {EDA}\) (tính chất góc ngoài) (2)

Xét \(\Delta DEB\)\(\widehat {AEI} = \widehat {EBD} + \widehat {BDE}\) (tính chất góc ngoài ) (3)

Từ (1), (2), (3) suy ra \(\widehat {AIE} = \widehat {AEI}\).

Do đó, \(\Delta AIE\) cân tại \(A\).

Suy ra \(AE = AI\).

Xét \(\Delta ADH\), có \(DI\) là đường phân giác nên \(\frac{{IH}}{{IA}} = \frac{{DH}}{{DA}}.\)

\(AE = AI\) (cmt) (4)

Suy ra \(\frac{{AD}}{{DH}} = \frac{{BD}}{{AD}}\), suy ra \(\frac{{AD}}{{BD}} = \frac{{DH}}{{DA}}\) (5)

Từ (4) và (5) suy ra \(\frac{{IH}}{{EA}} = \frac{{AD}}{{BD}}\) \(\left( * \right)\)

Xét \(\Delta ADB\)\(DE\) là đường phân giác nên \(\frac{{AE}}{{EB}} = \frac{{AD}}{{BD}}\)\(\left( {**} \right)\)

Từ (*) và (**) suy ra \(\frac{{IH}}{{EA}} = \frac{{AE}}{{EB}}\) hay \(A{E^2} = IH.EB\) (đpcm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

(0,5 điểm) Giải phương trình: \({\left( {2024 - x} \right)^3} + {\left( {2026 - x} \right)^3} + {\left( {2x - 4050} \right)^3} = 0\).

Xem đáp án » 17/03/2025 2,830

Câu 2:

a) Cửa hàng đã thu thập dữ liệu trên bằng phương pháp thu thập trực tiếp.

Xem đáp án » 17/03/2025 1,315

Câu 3:

Dữ liệu thu được về size áo bao gồm S, M, L của các nhân viên trong công ty là

Xem đáp án » 17/03/2025 536

Câu 4:

Cho các hình vẽ sau:

 Đoạn thẳng \(MN\) là đường trung bình của tam giác \(ABC\) trong hình vẽ nào? (ảnh 1)

Đoạn thẳng \(MN\) là đường trung bình của tam giác \(ABC\) trong hình vẽ nào?

Xem đáp án » 17/03/2025 414

Câu 5:

Năm nay tuổi con là \(x\) (tuổi) và tuổi mẹ gấp \(5\) lần tuổi con. Biểu thức biểu thị tuổi mẹ năm nay là

Xem đáp án » 17/03/2025 404

Câu 6:

Tung một đồng xu, xác suất của biến cố “Mặt xuất hiện của đồng xu là mặt \(N\)” bằng

Xem đáp án » 17/03/2025 386
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay