Câu hỏi:
17/03/2025 321(1,5 điểm) Cho hình chữ nhật \(ABCD\). Kẻ \(AH \bot BD\) tại \(H.\)
a) Chứng minh rằng .
Quảng cáo
Trả lời:
Vì \(ABCD\) là hình chữ nhật nên \(\widehat {BAD} = 90^\circ \).
Vì \(AH \bot BD\) tại \(H\) nên \(\widehat {BAD} = \widehat {AHB} = 90^\circ \).
Xét \(\Delta ABD\) và \(\Delta HBA\), có:
\(\widehat {BAD} = \widehat {AHB} = 90^\circ \) (cmt)
\(\widehat {ABD} = \widehat {ABH}\)
Do đó, (g.g)
Câu hỏi cùng đoạn
Câu 2:
b) Chứng minh rằng \(B{C^2} = BD.DH.\)
Lời giải của GV VietJack
Xét \(\Delta ABD\) và \(\Delta HAD\) có:
\(\widehat {BAD} = \widehat {AHD} = 90^\circ \)
\(\widehat {BDA} = \widehat {ADH}\)
Do đó, (g.g)
Suy ra \(\frac{{AD}}{{DH}} = \frac{{BD}}{{AD}}\) hay \[A{D^2} = BD.DH\].
Mà \[AD = BC\] (do \[ABCD\] là hình chữ nhật)
Suy ra \[B{C^2} = BD.DH\] (đpcm)
Câu 3:
c) Kẻ \(DE\) là đường phân giác của tam giác \(ABD\). Gọi \(I\) là giao điểm của \(DE\) và \(AH\). Chứng minh \(\Delta AIE\) cân và \(A{E^2} = IH.EB.\)
Lời giải của GV VietJack
Vì \(DE\) là đường phân giác của tam giác \(ABD\) nên \(\widehat {ADE} = \widehat {EDB}\).
Ta có: (cmt) nên \(\widehat {DBA} = \widehat {HAD}\) (hai góc tương ứng)
Suy ra \(\widehat {DBA} + \widehat {EDB} = \widehat {HAD} + \widehat {EDA}\) (1)
Xét \(\Delta AID\) có \(\widehat {AIE} = \widehat {IAD} + \widehat {IDA} = \widehat {HAD} + \widehat {EDA}\) (tính chất góc ngoài) (2)
Xét \(\Delta DEB\) có \(\widehat {AEI} = \widehat {EBD} + \widehat {BDE}\) (tính chất góc ngoài ) (3)
Từ (1), (2), (3) suy ra \(\widehat {AIE} = \widehat {AEI}\).
Do đó, \(\Delta AIE\) cân tại \(A\).
Suy ra \(AE = AI\).
Xét \(\Delta ADH\), có \(DI\) là đường phân giác nên \(\frac{{IH}}{{IA}} = \frac{{DH}}{{DA}}.\)
Mà \(AE = AI\) (cmt) (4)
Suy ra \(\frac{{AD}}{{DH}} = \frac{{BD}}{{AD}}\), suy ra \(\frac{{AD}}{{BD}} = \frac{{DH}}{{DA}}\) (5)
Từ (4) và (5) suy ra \(\frac{{IH}}{{EA}} = \frac{{AD}}{{BD}}\) \(\left( * \right)\)
Xét \(\Delta ADB\) có \(DE\) là đường phân giác nên \(\frac{{AE}}{{EB}} = \frac{{AD}}{{BD}}\)\(\left( {**} \right)\)
Từ (*) và (**) suy ra \(\frac{{IH}}{{EA}} = \frac{{AE}}{{EB}}\) hay \(A{E^2} = IH.EB\) (đpcm).
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
(0,5 điểm) Giải phương trình: \({\left( {2024 - x} \right)^3} + {\left( {2026 - x} \right)^3} + {\left( {2x - 4050} \right)^3} = 0\).
Câu 2:
a) Cửa hàng đã thu thập dữ liệu trên bằng phương pháp thu thập trực tiếp.
Câu 3:
Câu 4:
Cho các hình vẽ sau:
Đoạn thẳng \(MN\) là đường trung bình của tam giác \(ABC\) trong hình vẽ nào?
Câu 5:
Câu 6:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận