Câu hỏi:
18/03/2025 136(1,5 điểm) Cho tam giác \(ABC\) có ba góc nhọn \(\left( {AB < AC} \right)\), vẽ các đường cao \(BD\) và \(CE\).
a) Chứng minh rằng .
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(\widehat {BAC}\) chung (gt)
\(\widehat {ADB} = \widehat {AEC} = 90^\circ \) (gt)
Suy ra (g.g).
Câu hỏi cùng đoạn
Câu 2:
b) Chứng minh rằng \(\widehat {ABC} + \widehat {EDC} = 180^\circ \).
Lời giải của GV VietJack
Vì (cmt) nên \(\frac{{AD}}{{AE}} = \frac{{AB}}{{AC}}\) (các cặp tương ứng tỉ lệ)
Xét \(\Delta AED\) và \(\Delta ACB\) có:
\(\frac{{AD}}{{AE}} = \frac{{AB}}{{AC}}\) (cmt)
\(\widehat {BAC}\) chung
Do đó, (c.g.c)
Suy ra \(\widehat {ADE} = \widehat {ABC}\) (hai góc tương ứng)
Mặt khác \(\widehat {ADE} + \widehat {EDC} = 180^\circ \) (hai góc kề bù)
Do đó, \(\widehat {ADE} + \widehat {EDC} = \widehat {ABC} + \widehat {EDC} = 180^\circ \).
Câu 3:
c) Gọi \(M,N\) lần lượt là trung điểm của đoạn thẳng \(BD\) và \(CE\). Vẽ \(AK\) là phân giác ngoài của \(\widehat {MAN}\) \(\left( {K \in BC} \right)\). Chứng minh rằng \(KB.AC = KC.AB.\)
Lời giải của GV VietJack
Vì nên \(\frac{{AD}}{{AE}} = \frac{{AB}}{{AC}}\).
Mà \(M,N\) lần lượt là trung điểm của đoạn thẳng \(BD\) và \(CE\) nên \(BD = 2BM\) và \(CE = 2CN.\)
Suy ra \(\frac{{AB}}{{AC}} = \frac{{BD}}{{CE}} = \frac{{2BM}}{{2CN}} = \frac{{BM}}{{CN}}.\)
Xét \(\Delta ABD\) và \(\Delta ACN\) có: \(\frac{{BM}}{{CN}} = \frac{{AB}}{{AC}}\) (cmt)
\(\widehat {ABM} = \widehat {ACN}\) (cùng phụ với \(\widehat {BAC}\))
Do đó, (c.g.c)
Suy ra \(\widehat {BAM} = \widehat {CAN}\) (hai góc tương ứng)
Lại có \(AK\) là tia phân giác của \(\widehat {MAN}\) (giả thiết)
Suy ra \(\widehat {KAM} = \widehat {KAN}\) (tính chất tia phân giác của một góc)
Do đó, \(\widehat {KAM} + \widehat {BAM} = \widehat {KAN} + \widehat {CAN}\) hay \(\widehat {BAK} = \widehat {KAC}\).
Nên \(AK\) là tia phân giác của \(\widehat {BAC}\).
Theo tính chất tia phân giác của tam giác, ta có: \(\frac{{AB}}{{AC}} = \frac{{KB}}{{KC}}\).
Do đó, \(KB.AC = KC.AB\) (điều phải chứng minh).
Đã bán 212
Đã bán 123
Đã bán 287
Đã bán 230
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Gọi \(S\) là tập hợp các số tự nhiên có ba chữ số đôi một khác nhau được lập thành từ các số \(1,2,3,4,6\). Chọn ngẫu nhiên một số từ \(S\). Tính xác suất để số được chọn chia hết cho \(3.\)
(Kết quả ghi dưới dạng số thập phân)
Câu 5:
Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn
Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Thống kê số lượt hành khách vận chuyển bằng đường bộ ở Khánh Hòa trong các năm 2015; 2018; 2019; 2020 bằng bảng dưới đây.
Năm |
2015 |
2018 |
2019 |
2020 |
Số lượt hành khách (triệu lượt người) |
36,4 |
53,7 |
58,8 |
19,1 |
(Nguồn: Niên giám thống kê 2021)
Hỏi số lượt hành khách vận chuyển bằng đường bộ ở Khánh Hòa năm 2020 giảm bao nhiêu phần trăm so với năm 2019? (Kết quả làm tròn đến hàng phần mười)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận