Câu hỏi:

11/04/2025 510

Tính giá trị của biểu thức \(A = {x^{100}}{y^{100}} + {x^{99}}{y^{99}} + ... + {x^2}{y^2} + xy + 1\) tại \(x = - 1,y = 1\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(1\)

Ta có: \(A = {x^{100}}{y^{100}} + {x^{99}}{y^{99}} + ... + {x^2}{y^2} + xy + 1\)

\(A = {\left( { - 1} \right)^{100}}{.1^{100}} + {\left( { - 1} \right)^{99}}{.1^{99}} + ... + {\left( { - 1} \right)^2}{.1^2} + \left( { - 1} \right).1 + 1\)

\(A = 1 + \left( { - 1} \right) + ... + 1 + \left( { - 1} \right) + 1\)

\(A = 1\).

Vậy giá trị của biểu thức \(A = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Do các số chấm xuất hiện trên con xúc xắc là: \(1;2;3;4;5;6\) nên biến cố “Mặt xuất hiện có số chấm nhỏ hơn 7” là biến cố chắc chắn.

Lời giải

Hướng dẫn giải

Đáp án: \(3\)

Thực hiện chia đa thức \(h\left( x \right) = {x^3} + 3{x^2} + 5x + m\) cho \(x + 1\), ta được:

Cho đa thức \(h\left( x \right) = {x^3} + 3{x^2} + 5x + m\) (\(m\) là hệ số). Tìm giá trị của \(m\) để đa thức chia hết cho \(x + 1.\) (ảnh 1)

Do đó, có \(\left( {{x^3} + 3{x^2} + 5x + m} \right):\left( {x + 1} \right) = {x^2} + 2x + 3\) và dư \(m - 3\).

Để đa thức \(h\left( x \right)\) chia hết cho \(x + 1\) thì \(m - 3 = 0\) hay \(m = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP