Câu hỏi:

12/04/2025 58

Chọn ngẫu nhiên một số tự nhiên có hai chữ số. Tính xác suất để số được chọn chia hết cho \(5\) nhưng không chia hết cho \(2\). (Kết quả ghi dưới dạng số thập phân)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(0,1\)

Số các số có hai chữ số là: \(\left( {99 - 10} \right):1 + 1 = 90\) số

Các số có hai chữ số chia hết cho 5 nhưng không chia hết cho 2 là: \(15;25;35;45;55;65;75;85;95\).

Do đó, có 9 số có hai chữ số chia hết cho 5 nhưng không chia hết cho 2.

Vậy xác suất để chọn được số chia hết cho 5 nhưng không chia hết cho 2 là: \(\frac{9}{{90}} = \frac{1}{{10}} = 0,1.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

 a) \(\Delta ACE = \Delta AEK\).

Xem đáp án » 12/04/2025 72

Câu 2:

 a) Biến cố “Bạn được chọn có số thứ tự nhỏ hơn 10” là biến cố chắc chắn.

Xem đáp án » 11/04/2025 68

Câu 3:

Nếu tam giác \(MNP\) vuông tại \(M\)\(\widehat N = 30^\circ \) thì

Xem đáp án » 12/04/2025 47

Câu 4:

a) Chứng minh rằng \(\Delta ABH = \Delta ACH.\)

Xem đáp án » 12/04/2025 39

Câu 5:

Số nào sau đây là nghiệm của đa thức \(P\left( x \right) = 3x + 9\)?

Xem đáp án » 12/04/2025 32

Câu 6:

Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn

Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.

Cho \(12:a = b:5{\rm{ }}\left( {a,b \ne 0} \right)\), tỉ lệ thức sai là

Xem đáp án » 12/04/2025 31
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua