Câu hỏi:

12/04/2025 674 Lưu

Câu 27-29. (1,5 điểm) Cho \(\Delta ABC\) cân tại \(A\), kẻ \(AH\) vuông góc với \(BC\) tại \(H.\) Lấy \(N\) là trung điểm của cạnh \(AC\), hai đoạn thẳng \(BN\) và cạnh \(AH\) cắt nhau tại \(G.\) Trên tia đối của \(NG\) lấy điểm \(K\) sao cho \(NK = NG.\)

a) Chứng minh rằng \(\Delta ABH = \Delta ACH.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh rằng \(\Delta ABH = \Delta ACH.\) (ảnh 1)

a) Xét \(\Delta ABH\)\(\Delta ACH\), ta có:

\(AB = AC\) (\(\Delta ABC\) cân tại \(A\))

\(\widehat {AHB} = \widehat {AHC} = 90^\circ \) (gt)

\(AH\) chung

Do đó, \(\Delta ABH = \Delta ACH\) (ch – cgv)

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh \(CK \bot BC.\)

Xem lời giải

verified Lời giải của GV VietJack

b) Xét \(\Delta AGN\)\(\Delta CKN\), có:

\(NK = NG\) (gt)

\(AN = NC\) (gt)

\(\widehat {ANG} = \widehat {KNC}\) (đối đỉnh)

Do đó, \(\Delta AGN = \Delta CKN\) (c.g.c)

Suy ra \(\widehat {AGN} = \widehat {CKN}\) (hai cạnh tương ứng).

Mà hai góc ở vị trí so le trong.

Suy ra \(AG\parallel CK\) hay \(AH\parallel CK\).

Lại có \(AH \bot BC\) nên \(CK \bot BC\).

Câu 3:

c) Gọi \(M\) là trung điểm của cạnh \(AB.\) Chứng minh \(GM < \frac{1}{4}\left( {BC + AG} \right)\).

Xem lời giải

verified Lời giải của GV VietJack

c) Ta có \(BN,AH\) là các đường trung tuyến của tam giác \(ABC\).

\(BN\) và cạnh \(AH\) cắt nhau tại \(G\) nên \(G\) là trọng tâm của \(\Delta ABC\).

Ta có \(BK = BN + NK = 3GN + NK = 3GN + GN = 4GN\).

Mà theo bất đẳng thức về cạnh trong tam giác, có \(BC + KC > BK\).

Suy ra \(4GN < BC + CK\). (1)

\(\Delta AGN = \Delta CKN\) (câu b) nên \(AG = CK\) (hai cạnh tương ứng)

Xét \(\Delta MAG\)\(\Delta NAG\) có:

\(AM = AN = \frac{1}{2}AB\)

\(\widehat {MAG} = \widehat {NAG}\) (\(AG\) vừa là trung tuyến, vừa là phân giác trong \(\Delta ABC\) cân)

\(AG\) chung

Do đó, \(\Delta MAG = \Delta NAG\) (c.g.c)

Suy ra \(MG = NG\) (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra \(4GN < BC + CK\) hay \(4GM < BC + AG\) nên \(GM < \frac{1}{4}\left( {BC + AG} \right)\) (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: \(0,1\)

Số các số có hai chữ số là: \(\left( {99 - 10} \right):1 + 1 = 90\) số

Các số có hai chữ số chia hết cho 5 nhưng không chia hết cho 2 là: \(15;25;35;45;55;65;75;85;95\).

Do đó, có 9 số có hai chữ số chia hết cho 5 nhưng không chia hết cho 2.

Vậy xác suất để chọn được số chia hết cho 5 nhưng không chia hết cho 2 là: \(\frac{9}{{90}} = \frac{1}{{10}} = 0,1.\)

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Xét tam giác \(MNP\), có \(\widehat M = 90^\circ ,\widehat N = 30^\circ \) do đó, \(\widehat P = 180^\circ - \left( {30^\circ + 90^\circ } \right) = 60^\circ \).

Suy ra \(\widehat N < \widehat P < \widehat M\) nên \(MP < MN < NP\) (quan hệ giữa cạnh và góc trong tam giác)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP