Câu hỏi:
12/04/2025 147Câu 9-11. Cho đường tròn \(\left( {O;\,\,R} \right)\). Từ \(A\) trên \(\left( O \right),\) kẻ tiếp tuyến \(d\) với \(\left( O \right).\) Trên đường thẳng \(d\) lấy điểm \(M\) bất kỳ \(\left( M \right.\) khác \(\left. A \right),\) kẻ cát tuyến \(MNP.\) Gọi \(K\) là trung điểm của \(NP,\) kẻ tiếp tuyến \(MB.\) Kẻ \[AC \bot MB,\,\,BD \bot AM\,\,\left( {C \in MB,\,\,D \in AM} \right).\] Gọi\[H\] là giao điểm của \[AC\] và \[BD,\] \[I\] là giao điểm của \[OM\] và \[AB.\]
a) Chứng minh tứ giác \(AMBO\) nội tiếp.
Quảng cáo
Trả lời:
a) Ta có \(\widehat {OAM} = 90^\circ \) (do \[MA\] là tiếp tuyến của \[\left( O \right)\], \[A\] là tiếp điểm).
Suy ra ba điểm \(O,\,\,A,\,\,M\) cùng thuộc một đường tròn đường kính
Lại có \(\widehat {OBM} = 90^\circ \) (do \[MB\] là tiếp tuyến của \[\left( O \right)\], \[B\] là tiếp điểm).
Suy ra ba điểm \(O,\,\,B,\,\,M\) cùng thuộc một đường tròn đường kínhTừ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta được tứ giác \[AMBO\] nội tiếp đường tròn đường kính \[OM.\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta được tứ giác \[AMBO\] nội tiếp đường tròn đường kính \[OM.\]
Câu hỏi cùng đoạn
Câu 2:
b) Chứng minh \(OI \cdot OM = {R^2}\).
Lời giải của GV VietJack
b) Ta có tứ giác \[AMBO\] nội tiếp đường tròn đường kính \[OM.\]
Suy ra \[AB\] là dây cung của đường tròn đường kính \[OM.\]
Do đó \(OM \bot AB\).
Xét \(\Delta OAM\) vuông tại \[A\] có \[AI\] là đường cao.
Xét \(\Delta OAM\) và \[\Delta OIA\] là hai tam giác vuông có góc \[\widehat O\] chung.
Do đó
Suy ra \[\frac{{OA}}{{OI}} = \frac{{OM}}{{OA}}\] hay \[O{A^2} = OM.OI\] mà \[OA = R\] nên \(OI \cdot OM = {R^2}\).
Câu 3:
c) Chứng minh ba điểm \(O,\,\,H,\,\,M\) thẳng hàng.
Lời giải của GV VietJack
c) Áp dụng định lí Pythagore trong tam giác vuông \[IOA\], ta có
\[I{A^2} = O{A^2} - O{I^2} = OI \cdot OM - O{I^2} = OI\left( {OM - OI} \right) = OI \cdot IM\].
Ta có \(OA \bot AM\) (do \[AM\] là tiếp tuyến của \(\left( O \right)\) và \(BD \bot MA\) (gt), suy ra \[OA\,{\rm{//}}\,BD\].
Chứng minh tương tự, ta được \[OB\,\,{\rm{//}}\,AC\].
Do đó tứ giác \[OAHB\] là hình bình hành.
Mà \(OA = OB = R\) nên tứ giác \[OAHB\] là hình thoi, suy ra \(OH \bot AB\).
Mà \(OM \bot AB\), do đó \[OM \equiv OH\].
Vậy ba điểm \[O,\,\,H,M\] thẳng hàng.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 5:
Giải bài toán sau bằng cách lập phương trình:
Quãng đường \({\rm{AB}}\) dài \(90{\rm{\;km}}\), có hai ô tô khởi hành cùng một lúc. Ô tô thứ nhất đi từ A đến \({\rm{B}}\) ô tô thứ hai đi từ \({\rm{B}}\) đến \({\rm{A}}\). Sau \[1\] giờ hai xe gặp nhau và tiếp tục đi. Xe ô tô thứ hai tới A trước xe thứ nhất tới B là \[27\] phút. Tính vận tốc của mỗi xe.
Câu 6:
Cho vòng quay mặt trời gồm 8 cabin như hình vẽ. Hỏi để cabin A di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều kim đồng hồ quanh tâm bao nhiêu độ?
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận