Câu hỏi:
12/04/2025 85
Giải bài toán sau bằng cách lập phương trình:
Quãng đường \({\rm{AB}}\) dài \(90{\rm{\;km}}\), có hai ô tô khởi hành cùng một lúc. Ô tô thứ nhất đi từ A đến \({\rm{B}}\) ô tô thứ hai đi từ \({\rm{B}}\) đến \({\rm{A}}\). Sau \[1\] giờ hai xe gặp nhau và tiếp tục đi. Xe ô tô thứ hai tới A trước xe thứ nhất tới B là \[27\] phút. Tính vận tốc của mỗi xe.
Giải bài toán sau bằng cách lập phương trình:
Quãng đường \({\rm{AB}}\) dài \(90{\rm{\;km}}\), có hai ô tô khởi hành cùng một lúc. Ô tô thứ nhất đi từ A đến \({\rm{B}}\) ô tô thứ hai đi từ \({\rm{B}}\) đến \({\rm{A}}\). Sau \[1\] giờ hai xe gặp nhau và tiếp tục đi. Xe ô tô thứ hai tới A trước xe thứ nhất tới B là \[27\] phút. Tính vận tốc của mỗi xe.
Quảng cáo
Trả lời:
Đổi 27 phút \( = \frac{9}{{20}}\) (giờ).
Sau 1 giờ hai xe gặp nhau nên tổng vận tốc của hai xe bằng \(90\,\,{\rm{km}}/{\rm{h}}.\)
Gọi \(x\,\,\left( {{\rm{km}}/{\rm{h}}} \right)\) là vận tốc cùa \({\rm{xe}}\) thứ nhất \(\left( {0 < x < 90} \right)\).
thì vận tốc của xe thứ hai là \[90 - x\,\,\left( {{\rm{km}}/{\rm{h}}} \right)\].
Thời gian của xe thứ nhất di từ \({\rm{A}}\) dến \({\rm{B}}\) là \(\frac{{90}}{x}\) (giờ).
Thời gian của xe thứ hai là \(\frac{{90}}{{90 - x}}\) (giờ).
Theo đề bài, ta có phương trình: \(\frac{{90}}{x} - \frac{9}{{90 - x}} = \frac{9}{{20}}\).
\(\frac{{10}}{x} - \frac{1}{{90 - x}} = \frac{1}{{20}}\)
\({x^2} - 490x + 18\,\,000 = 0\)
\(x = 40\) (TMĐK) hoặc \(x = 450\) (loại).
Vậy vận tốc của xe thứ nhất là \[40\,\,{\rm{km}}/{\rm{h}}\]; vận tốc của xe thứ hai là \(50\,\,{\rm{km}}/{\rm{h}}{\rm{.}}\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ biểu đồ trên, ta có bảng tần số ghép nhóm tương ứng như sau:
Cân nặng (kg) |
\[\left[ {35\,;\,\,40} \right)\] |
\[\left[ {40\,;\,\,45} \right)\] |
\[\left[ {45\,;\,\,50} \right)\] |
\[\left[ {50\,;\,\,55} \right)\] |
\[\left[ {55\,;\,\,60} \right)\] |
\[\left[ {60\,;\,\,65} \right)\] |
Tần số tương đối |
5% |
10% |
37,5% |
27,5% |
15% |
5% |
Lời giải
a) Ta có \(\widehat {OAM} = 90^\circ \) (do \[MA\] là tiếp tuyến của \[\left( O \right)\], \[A\] là tiếp điểm).
Suy ra ba điểm \(O,\,\,A,\,\,M\) cùng thuộc một đường tròn đường kính
Lại có \(\widehat {OBM} = 90^\circ \) (do \[MB\] là tiếp tuyến của \[\left( O \right)\], \[B\] là tiếp điểm).
Suy ra ba điểm \(O,\,\,B,\,\,M\) cùng thuộc một đường tròn đường kínhTừ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta được tứ giác \[AMBO\] nội tiếp đường tròn đường kính \[OM.\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta được tứ giác \[AMBO\] nội tiếp đường tròn đường kính \[OM.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.