Bộ 5 đề thi giữa kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
5 người thi tuần này 4.6 18 lượt thi 8 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 1: Đại số)
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1
Bộ 10 đề thi giữa kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Với \(m \ne 0,\) ta viết phương trình \(x + my = n\) về dạng \(y = - \frac{1}{m}x + \frac{n}{m}\).
Do đó đồ thị hàm số \(y = - \frac{1}{m}x + \frac{n}{m}\) biểu diễn tất cả các nghiệm của phương trình bậc nhất một ẩn \(x + my = n\).
Nghiệm tổng quát của phương trình \(x + my = n\) là \(\left( {x;\,\, - \frac{1}{m}x + \frac{n}{m}} \right)\) với \(x \in \mathbb{R}\) tùy ý và \(m \ne 0.\)
b) Với \(m = - 2;\,\,n = 1\) thì ta có \({d_1}:x - 2y = 1\).
Tọa độ giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\) thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}x - 2y = 1\\ - 2x + 3y = - 1.\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với 2, ta được hệ \(\left\{ \begin{array}{l}2x - 4y = 2\\ - 2x + 3y = - 1.\end{array} \right.\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \( - y = 1\) hay \(y = - 1.\)
Thay \(y = - 1\) vào phương trình \(x - 2y = 1,\) ta được: \(x - 2 \cdot \left( { - 1} \right) = 1\) hay \(x + 2 = 1,\) suy ra \(x = - 1.\)
Vậy tọa độ giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\) là\(\left( { - 1\,;\,\, - 1} \right).\)
Lời giải
a) \[\left( {3x + 2} \right)\left( {1 - x} \right) = 0\]
\(3x + 2 = 0\) hoặc \(1 - x = 0\)
\(3x = - 2\) hoặc \(x = 1\)
\(x = \frac{{ - 2}}{3}\) hoặc \(x = 1\)
Vậy phương trình đã cho có nghiệm là \(x = \frac{{ - 2}}{3};\,\,x = 1.\)b) Điều kiện xác định \(x \ne 0;\,\,x \ne 3.\)
\(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}\)
\(\frac{{\left( {x + 3} \right)x}}{{x\left( {x - 3} \right)}} = \frac{3}{{x\left( {x - 3} \right)}} + \frac{{x - 3}}{{x\left( {x - 3} \right)}}\)
\(\left( {x + 3} \right)x = 3 + x - 3\)
\({x^2} + 3x = 3 + x - 3\)
\({x^2} + 2x = 0\)
\(x\left( {x + 2} \right) = 0\)
\(x = 0\) hoặc \(x + 2 = 0\)
\(x = 0\) (không thỏa mãn) hoặc \(x = - 2\) (thỏa mãn).
Vậy nghiệm phương trình đã cho là \(x = - 2\).
Lời giải
a) \(3x - 8 < 4x - 12\)
\(3x - 4x < - 12 + 8\)
\( - x < - 4\)
\(x > 4\).
Vậy nghiệm của bất phương trình đã cho là \(x > 4.\)
b) \[\frac{{4x - 1}}{2} + \frac{{6x - 19}}{6} \ge \frac{{9x - 11}}{3}\]
\[\frac{{3\left( {4x - 1} \right)}}{6} + \frac{{6x - 19}}{6} \ge \frac{{2\left( {9x - 11} \right)}}{6}\]
\[3\left( {4x - 1} \right) + 6x - 19 \ge 2\left( {9x - 11} \right)\]
\[12x - 3 + 6x - 19 \ge 18x - 22\]
\[12x + 6x - 18x \ge - 22 + 3 + 19\]
\[0x \ge 0\].
Vậy nghiệm của bất phương trình đã cho là \(x \in \mathbb{R}.\)Lời giải
Gọi \[x,{\rm{ }}y\] (bước) lần lượt là số bước mà anh Sơn và chị Hà đi bộ trong 1 phút\[\left( {x,{\rm{ }}y \in \mathbb{N}*;\,\,x > y} \right).\]
Trong 2 phút, anh Sơn đi được \(2x\) (bước); chị Hà đi được \(2y\) (bước).
Nếu đi cùng trong 2 phút thì anh Sơn đi nhiều hơn chị Hà 20 bước nên
\(2x - 2y = 20\) hay \(x - y = 10 & \left( 1 \right)\)
Trong 3 phút anh Sơn đi được \(3x\) (bước)
Trong 5 phút chị Hà đi được \(5y\) (bước)
Do chị Hà đi trong 5 phút thì nhiều hơn anh Sơn đi trong 3 phút là 160 bước nên
\[5y - 3x = 160\] hay \[ - 3x + 5y = 160 & & \left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 10\\ - 3x + 5y = 160\end{array} \right.\).
Nhân hai vế của phương trình thứ nhất với \(3,\) ta được hệ phương trình \(\left\{ \begin{array}{l}3x - 3y = 30\\ - 3x + 5y = 160\end{array} \right..\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(2y = 190\) nên \(y = 95\) (thỏa mãn).
Thay \(y = 95\) vào phương trình thứ nhất của hệ ban đầu, ta được:
\[x - 95 = 10\] suy ra \(x = 10 + 95 = 105\) (thỏa mãn).
Mỗi ngày anh Sơn đi bộ trong 1 giờ nên số bước anh Sơn đi là \(105 \cdot 60 = 6\,\,300\) (bước)
Mỗi ngày anh Sơn đi bộ trong 1 giờ nên số bước chị Hà đi là \(95 \cdot 60 = 5\,\,700\) (bước)
Vậy anh Sơn đạt được mục tiêu đề ra, còn chị Hà thì không đạt mục tiêu đề ra.
Lời giải
a) Gọi \(x\) là số câu trả lời đúng \(\left( {0 \le x \le 12,\,\,x \in \mathbb{N}} \right)\).
Khi đó, số câu trả lời sai là \(12 - x\) (câu hỏi).
Số điểm được cộng khi trả lời đúng \(x\) câu hỏi là \(5x\) (điểm)
Số điểm bị trừ khi trả lời đúng \(12 - x\) câu hỏi là \(2\left( {12 - x} \right)\) (điểm)
Khi bắt đầu cuộc thi mỗi thí sinh có sẵn 20 điểm nên số điểm thí
Theo đề bài, những thí sinh nào đạt từ 50 điểm trở lên sẽ được vào vòng tiếp theo nên ta có
\(20 + 5x - 2\left( {12 - x} \right) \ge 50\)
Vậy bất phương trình cần tìm là: \(20 + 5x - 2\left( {12 - x} \right) \ge 50\).
b) Giải bất phương trình:
\(20 + 5x - 2\left( {12 - x} \right) \ge 50\)
\(20 + 5x - 24 + 2x \ge 50\)
\(7x - 4 \ge 50\)
\(x \ge \frac{{54}}{7} \approx 7,714.\)
Vậy thí sinh muốn vào vòng tiếp theo cần trả lời đúng 8 câu hỏi trở lên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Tại hai điểm cách nhau \[1\,\,{\rm{km}}\] trên mặt đất người ta nhìn thấy đỉnh núi với góc nâng lần lượt là \[40^\circ \] và \[32^\circ \] \((A,\,\,B,\,\,C\) thẳng hàng) (như hình vẽ). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/blobid0-1764082271.png)