10 bài tập Xác định tham số để phương trình bậc hai thỏa mãn điều kiện cho trước khác có lời giải
44 người thi tuần này 4.6 143 lượt thi 10 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Câu 1
A. \[{x_2} = \frac{4}{3}.\]
B. \[{x_2} = - \frac{4}{3}.\]
C. \[{x_2} = \frac{3}{4}.\]
D. \[{x_2} = - \frac{3}{4}.\]
Lời giải
Đáp án đúng là: B
Thay x1 = 3 vào phương trình x2 + (2m + 1)x + 3m = 0, ta được:
32 + (2m + 1).3 + 3m = 0
9 + 6m + 3 + 3m = 0
9m = –12
\(m = \frac{{ - 4}}{3}.\)
Theo định lí Viète, ta có: \[{x_1}{x_2} = 3m = 3 \cdot \frac{{ - 4}}{3} = - 4.\]
Hay 3.x2 = –4 nên \[{x_2} = - \frac{4}{3}.\]
Vậy ta chọn phương án B.
Câu 2
A. \(m = - \frac{7}{9}.\)
B. \(m = - \frac{7}{5}.\)
C. \(m = - \frac{7}{8}.\)
D. \(m = - \frac{7}{4}.\)
Lời giải
Đáp án đúng là: A
Phương trình mx2 – 2(m + 1)x + m + 3 = 0 là phương trình bậc hai khi m ≠ 0.
Thay x = –2 vào phương trình, ta được:
m.(–2)2 – 2.(m + 1).(–2) + m + 3 = 0
4m + 4m + 4 + m + 3 = 0
9m = –7
\(m = - \frac{7}{9}\) (thỏa mãn m ≠ 0).
Vậy ta chọn phương án A.
Câu 3
A. \( - \frac{2}{7}.\)
B. \(\frac{2}{7}.\)
C. \(\frac{4}{7}.\)
D. \( - \frac{4}{7}.\)
Lời giải
Đáp án đúng là: B
Vì x = –2 là nghiệm của phương trình x2 – 3mx + m = 0 nên ta có:
(–2)2 – 3m.(–2) + m = 0
4 + 6m + m = 0
7m = –4
\(m = - \frac{4}{7}.\)
Theo định lí Viète, ta có: tích hai nghiệm của phương trình là \( - 2 \cdot a = m,\) suy ra \( - 2a = - \frac{4}{7},\) nên \(a = \frac{2}{7}.\)
Vậy ta chọn phương án B.
Lời giải
Đáp án đúng là: C
Phương trình x2 – mx + m – 2 = 0 là phương trình bậc hai ẩn x có:
∆ = (–m)2 – 4.1.(m – 2) = m2 – 4m + 8 = (m – 2)2 + 4 > 0 với mọi m.
Do đó phương trình đã cho có hai nghiệm phân biệt x1, x2 với mọi m.
Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}{x_2} = m - 2\end{array} \right..\)
Theo bài, \(x_1^2 + x_2^2 = 7\)
(x1 + x2)2 – 2x1x2 = 7
m2 – 2.(m – 2) = 7
m2 – 2m + 4 = 7
m2 – 2m – 3 = 0
m = –1 hoặc m = 3.
Tổng các giá trị của m bằng (–1) + 3 = 2.
Câu 5
A. m < 0.
>B. m > 1.
C. m > 2.
D. m < 3.
>Lời giải
Đáp án đúng là: B
Phương trình x2 – 2(m – 2)x + 2m – 5 = 0 là phương trình bậc hai ẩn x có:
∆' = [– (m – 2)]2 – 1.(2m – 5) = m2 – 4m + 4 – 2m + 5
= m2 – 6m + 9 = (m – 3)2 ≥ 0 với mọi m.
Do đó phương trình đã cho có hai nghiệm x1, x2 với mọi m.
Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 2} \right)\\{x_1}{x_2} = 2m - 5\end{array} \right..\)
Theo bài, x1(1 – x2) + x2(1 – x1) < 4
x1 – x1x2 + x2 – x1x2 < 4
(x1 + x2) – 2x1x2 < 4
2(m – 2) – 2.(2m – 5) < 4
2m – 4 – 4m + 10 < 4
–2m < –2
m > 1.
Vậy ta chọn phương án B.
>>>>>>Câu 6
A. \(m = \frac{{39}}{{16}}.\)
B. m = 1.
C. \(m = \frac{5}{8}.\)
D. Không có giá trị m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.