10 bài tập Chứng minh hai biểu thức tích bằng nhau có lời giải
47 người thi tuần này 4.6 154 lượt thi 10 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Câu 1
A. ID.CD.
B. IC.CB.
C. IC.CD.
D. IC.ID.
Lời giải
Đáp án đúng là: D

Ta có tứ giác ABDC nội tiếp nên
\[\widehat {BAC} + \widehat {CDB} = 180^\circ \].Mà \[\widehat {BAC} + \widehat {CAI} = 180^\circ \] (hai góc kề bù)
Do đó, \[\widehat {CAI} = \widehat {CDB}\].
Xét ∆IDB và ∆IAC, có:
\[\widehat {CAI} = \widehat {CDB}\] (cmt)
\[\widehat {AIC} = \widehat {BID}\]
Do đó, ∆IDB ᔕ ∆IAC (g.g)
Suy ra \[\frac{{ID}}{{IA}} = \frac{{IB}}{{IC}}\] nên IA.IB = IC.ID.
Câu 2
A. AD.AE.
B. AD.AC.
C. AE.BE.
D. AD.BD.
Lời giải
Đáp án đúng là: A

Xét ∆ADC và ∆ACE, có:
\[\widehat {EAC}\] chung (gt)
\[\widehat {AEC} = \widehat {ACD}\] (góc nội tiếp chắn hai cung bằng nhau)
Do đó, ∆ADC ᔕ ∆ACE (g.g)
Suy ra \[\frac{{AD}}{{AC}} = \frac{{AC}}{{AE}}\] hay AC2 = AD.AE.
Mà ta có AB = AC nên AB2 = AC2 = AD.AE.
Câu 3
A. DC2.
B. DB2.
C. DB.DC.
D. AB.AC.
Lời giải
Đáp án đúng là: D

Xét ∆ADC và ∆ACE, có:
\[\widehat {EAC}\] chung (gt)
\[\widehat {AEC} = \widehat {ACD}\] (góc nội tiếp chắn hai cung bằng nhau)
Do đó, ∆ADC ᔕ ∆ACE (g.g)
Suy ra \[\frac{{AD}}{{AC}} = \frac{{AC}}{{AE}}\] hay AC2 = AD.AE.
Mà ta có AB = AC nên AB2 = AC2 = AD.AE = AB.AC.
Câu 4
A. EH.EC = EA.EB.
B. EH.EC = AE2.
C. EH.EC = AE.AF.
D. EH.EC = AH2.
Lời giải
Đáp án đúng là: A

Xét hai tam giác vuông ∆EBH và ∆ECA, có:
\[\widehat {EBH} = \widehat {ECA}\] (cùng phụ với \[\widehat {BAC}\])
Do đó, ∆EBH ᔕ ∆ECA (g.g)
Suy ra \[\frac{{EB}}{{EC}} = \frac{{EH}}{{EA}}\] suy ra EB.EA = EC.EH.
Sử dụng dữ kiện của bài toán dưới đây để trả lời Câu 5,6.
Cho tam giác ABC nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF.
Lời giải
Đáp án đúng là: A

Ta có hai đường cao BD và CE cắt nhau tại H nên H là trực tâm của tam giác ABC.
Do đó, AH ⊥ BC (1)
Lại có M là trung điểm của BC nên OM ⊥ BC (2)
Từ (1) và (2) suy ra OM ∕∕ AH.
Mà O là trung điểm của AF nên OM là đường trung bình của tam giác AHF.
Suy ra AH = 2OM.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. AH.HD.
B. AH.AD.
C. AH.HB.
D. AH2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. 15 cm2.
B. 8 cm2.
C. 12 cm2.
D. 30 cm2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. BH.BE = BC.BD.
B. CH.CF = CD.CB.
C. A, B đều đúng.
D. A, B đều sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.