Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có hai đường cao BD và CE cắt nhau tại H nên H là trực tâm của tam giác ABC.
Do đó, AH ⊥ BC (1)
Lại có M là trung điểm của BC nên OM ⊥ BC (2)
Từ (1) và (2) suy ra OM ∕∕ AH.
Mà O là trung điểm của AF nên OM là đường trung bình của tam giác AHF.
Suy ra AH = 2OM.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Do AD, BE là các đường cao nên
\[\widehat {HDC} = \widehat {HEC} = 90^\circ \].Vì ∆HDC vuông tại D nên ba điểm H, D, C cùng thuộc đường tròn đường kính HD.
∆HEC vuông tại E nên ba điểm H, E, C cùng thuộc đường tròn đường kính HE.
Suy ra H, D, C, E cùng thuộc một đường tròn.
Các góc \[\widehat {HCD},\widehat {HED}\] cùng chắn cung HD nên \[\widehat {HCD} = \widehat {HED}\] (1).
Xét hai tam giác ∆BDE và ∆BHC, có:
\[\widehat {HCD} = \widehat {HED}\] và \[\widehat {EBC}\] chung.
Do đó, ∆BDE ᔕ ∆BHC.
Từ đó ta nhận được \[\frac{{BD}}{{BH}} = \frac{{BE}}{{BC}}\] suy ra BH.BE = BC.BD.
Chứng minh tương tự ta có CH.CF = CD.CB.
Suy ra CH.CF = CD.CB.
Do đó, chọn đáp án C.
Lời giải
Đáp án đúng là: A
Xét hai tam giác vuông ∆EBH và ∆ECA, có:
\[\widehat {EBH} = \widehat {ECA}\] (cùng phụ với \[\widehat {BAC}\])
Do đó, ∆EBH ᔕ ∆ECA (g.g)
Suy ra \[\frac{{EB}}{{EC}} = \frac{{EH}}{{EA}}\] suy ra EB.EA = EC.EH.
Sử dụng dữ kiện của bài toán dưới đây để trả lời Câu 5,6.
Cho tam giác ABC nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
15 câu Trắc nghiệm Toán 9 Cánh diều Bài 1. Phương trình quy về phương trình bậc nhất một ẩn có đáp án