Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D). Tích IA.IB bằng
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có tứ giác ABDC nội tiếp nên
\[\widehat {BAC} + \widehat {CDB} = 180^\circ \].Mà \[\widehat {BAC} + \widehat {CAI} = 180^\circ \] (hai góc kề bù)
Do đó, \[\widehat {CAI} = \widehat {CDB}\].
Xét ∆IDB và ∆IAC, có:
\[\widehat {CAI} = \widehat {CDB}\] (cmt)
\[\widehat {AIC} = \widehat {BID}\]
Do đó, ∆IDB ᔕ ∆IAC (g.g)
Suy ra \[\frac{{ID}}{{IA}} = \frac{{IB}}{{IC}}\] nên IA.IB = IC.ID.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Do AD, BE là các đường cao nên
\[\widehat {HDC} = \widehat {HEC} = 90^\circ \].Vì ∆HDC vuông tại D nên ba điểm H, D, C cùng thuộc đường tròn đường kính HD.
∆HEC vuông tại E nên ba điểm H, E, C cùng thuộc đường tròn đường kính HE.
Suy ra H, D, C, E cùng thuộc một đường tròn.
Các góc \[\widehat {HCD},\widehat {HED}\] cùng chắn cung HD nên \[\widehat {HCD} = \widehat {HED}\] (1).
Xét hai tam giác ∆BDE và ∆BHC, có:
\[\widehat {HCD} = \widehat {HED}\] và \[\widehat {EBC}\] chung.
Do đó, ∆BDE ᔕ ∆BHC.
Từ đó ta nhận được \[\frac{{BD}}{{BH}} = \frac{{BE}}{{BC}}\] suy ra BH.BE = BC.BD.
Chứng minh tương tự ta có CH.CF = CD.CB.
Suy ra CH.CF = CD.CB.
Do đó, chọn đáp án C.
Lời giải
Đáp án đúng là: A
Xét hai tam giác vuông ∆EBH và ∆ECA, có:
\[\widehat {EBH} = \widehat {ECA}\] (cùng phụ với \[\widehat {BAC}\])
Do đó, ∆EBH ᔕ ∆ECA (g.g)
Suy ra \[\frac{{EB}}{{EC}} = \frac{{EH}}{{EA}}\] suy ra EB.EA = EC.EH.
Sử dụng dữ kiện của bài toán dưới đây để trả lời Câu 5,6.
Cho tam giác ABC nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.