Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Xét hai tam giác vuông ∆HDC và ∆ADB có

\[\widehat {EBH} = \widehat {ECA}\] (cùng phụ với \[\widehat {BAC}\]).

Do đó, ∆HDC ᔕ ∆ADB (g.g)

Suy ra \[\frac{{DH}}{{DA}} = \frac{{DC}}{{DB}}\] hay HD.DB = DA.DC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Do AD, BE là các đường cao nên

\[\widehat {HDC} = \widehat {HEC} = 90^\circ \].

Vì ∆HDC vuông tại D nên ba điểm H, D, C cùng thuộc đường tròn đường kính HD.

∆HEC vuông tại E nên ba điểm H, E, C cùng thuộc đường tròn đường kính HE.

Suy ra H, D, C, E cùng thuộc một đường tròn.

Các góc \[\widehat {HCD},\widehat {HED}\] cùng chắn cung HD nên \[\widehat {HCD} = \widehat {HED}\] (1).

Xét hai tam giác ∆BDE và ∆BHC, có:

\[\widehat {HCD} = \widehat {HED}\] và \[\widehat {EBC}\] chung.

Do đó, ∆BDE ᔕ ∆BHC.

Từ đó ta nhận được \[\frac{{BD}}{{BH}} = \frac{{BE}}{{BC}}\] suy ra BH.BE = BC.BD.

Chứng minh tương tự ta có CH.CF = CD.CB.

Suy ra CH.CF = CD.CB.

Do đó, chọn đáp án C.

Lời giải

Đáp án đúng là: A

Xét hai tam giác vuông ∆EBH và ∆ECA, có:

\[\widehat {EBH} = \widehat {ECA}\] (cùng phụ với \[\widehat {BAC}\])

Do đó, ∆EBH ᔕ ∆ECA (g.g)

Suy ra \[\frac{{EB}}{{EC}} = \frac{{EH}}{{EA}}\] suy ra EB.EA = EC.EH.

Sử dụng dữ kiện của bài toán dưới đây để trả lời Câu 5,6.

Cho tam giác ABC nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay