10 bài tập Chứng minh hai biểu thức tích bằng nhau có lời giải
15 người thi tuần này 4.6 15 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: D
Ta có tứ giác ABDC nội tiếp nên
\[\widehat {BAC} + \widehat {CDB} = 180^\circ \].Mà \[\widehat {BAC} + \widehat {CAI} = 180^\circ \] (hai góc kề bù)
Do đó, \[\widehat {CAI} = \widehat {CDB}\].
Xét ∆IDB và ∆IAC, có:
\[\widehat {CAI} = \widehat {CDB}\] (cmt)
\[\widehat {AIC} = \widehat {BID}\]
Do đó, ∆IDB ᔕ ∆IAC (g.g)
Suy ra \[\frac{{ID}}{{IA}} = \frac{{IB}}{{IC}}\] nên IA.IB = IC.ID.
Lời giải
Đáp án đúng là: A
Xét ∆ADC và ∆ACE, có:
\[\widehat {EAC}\] chung (gt)
\[\widehat {AEC} = \widehat {ACD}\] (góc nội tiếp chắn hai cung bằng nhau)
Do đó, ∆ADC ᔕ ∆ACE (g.g)
Suy ra \[\frac{{AD}}{{AC}} = \frac{{AC}}{{AE}}\] hay AC2 = AD.AE.
Mà ta có AB = AC nên AB2 = AC2 = AD.AE.
Lời giải
Đáp án đúng là: D
Xét ∆ADC và ∆ACE, có:
\[\widehat {EAC}\] chung (gt)
\[\widehat {AEC} = \widehat {ACD}\] (góc nội tiếp chắn hai cung bằng nhau)
Do đó, ∆ADC ᔕ ∆ACE (g.g)
Suy ra \[\frac{{AD}}{{AC}} = \frac{{AC}}{{AE}}\] hay AC2 = AD.AE.
Mà ta có AB = AC nên AB2 = AC2 = AD.AE = AB.AC.
Lời giải
Đáp án đúng là: A
Xét hai tam giác vuông ∆EBH và ∆ECA, có:
\[\widehat {EBH} = \widehat {ECA}\] (cùng phụ với \[\widehat {BAC}\])
Do đó, ∆EBH ᔕ ∆ECA (g.g)
Suy ra \[\frac{{EB}}{{EC}} = \frac{{EH}}{{EA}}\] suy ra EB.EA = EC.EH.
Sử dụng dữ kiện của bài toán dưới đây để trả lời Câu 5,6.
Cho tam giác ABC nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF.
Lời giải
Đáp án đúng là: A
Ta có hai đường cao BD và CE cắt nhau tại H nên H là trực tâm của tam giác ABC.
Do đó, AH ⊥ BC (1)
Lại có M là trung điểm của BC nên OM ⊥ BC (2)
Từ (1) và (2) suy ra OM ∕∕ AH.
Mà O là trung điểm của AF nên OM là đường trung bình của tam giác AHF.
Suy ra AH = 2OM.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
3 Đánh giá
50%
40%
0%
0%
0%