21 bài tập Toán 9 Kết nối tri thức Bài 29. Tứ giác nội tiếp có đáp án
4.6 0 lượt thi 21 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
11 bài tập Toán 9 Kết nối tri thức Ôn tập cuối chương 7 có đáp án
25 câu Trắc nghiệm Toán 9 Kết nối tri thức Ôn tập cuối chương 7 có đáp án
3 bài tập Biểu đồ tần số tương đối ghép nhóm dạng đoạn thẳng (có lời giải)
6 bài tập Biểu đồ tần số tương đối ghép nhóm dạng cột (có lời giải)
9 bài tập Tần số ghép nhóm, tần số tương đối ghép nhóm (có lời giải)
Danh sách câu hỏi:
Lời giải
Ở hình a) và hình b), tứ giác nội tiếp đường tròn vì 4 đỉnh tứ giác nằm trên đường tròn
Ở hình c) và hình d), tứ giác không nội tiếp đường tròn vì có một đỉnh tứ giác không nằm trên đường tròn
Lời giải
Lời giải
Ở hình 1) và hình 3), đường tròn \[\left( O \right)\] là đường tròn ngoại tiếp tứ giác \[ABCD\] vì nó đi qua cả bốn đỉnh của tứ giác \[ABCD\].
Ở hình 2), đường tròn \[\left( O \right)\] là đường tròn không ngoại tiếp tứ giác \[ABCD\] vì nó không đi qua đỉnh \[D\] của tứ giác.
Lời giải

a). Giả sử các đường cao của tam giác là \(AK,CI\) . Để chứng minh \(AHCP\) là tứ giác nội tiếp ta sẽ chứng minh \(\widehat {AHC} + \widehat {APC} = {180^0}\).
Ta có:
\(\widehat {AHC} = \widehat {IHK}\) ( đối đỉnh)
\(\widehat {APC} = \widehat {AMC} = \widehat {ABC}\) ( do tính đối xứng và góc nội tiếp cùng chắn một cung).
Như vậy ta chỉ cần chứng minh \(\widehat {ABC} + \widehat {IHK} = {180^0}\) nhưng điều này là hiển nhiên do tứ giác \(BIHK\)là tứ giác nội tiếp.
b). Để chứng minh \(N,H,P\) thẳng hàng ta sẽ chứng minh \(\widehat {NHA} + \widehat {AHP} = {180^0}\) do đó ta sẽ tìm cách quy hai góc này về 2 góc đối nhau trong một tứ giác nội tiếp.
Thật vậy ta có: \(\widehat {AHP} = \widehat {ACP}\) (tính chất góc nội tiếp), \(\widehat {ACP} = \widehat {ACM}\) (1) (Tính chất đối xứng) .
Ta thấy vai trò tứ giác \(AHCP\) giống với \(AHBN\) nên ta cũng dễ chứng minh được \(AHBN\) là tứ giác nội tiếp từ đó suy ra \(\widehat {AHN} = \widehat {ABN}\) , mặt khác \(\widehat {ABN} = \widehat {ABM}\) (2) (Tính chất đối xứng) .
Từ (1), (2) ta suy ra chỉ cần chứng minh \(\widehat {ABM} + \widehat {ACM} = {180^0}\) nhưng điều này là hiển nhiên do tứ giác \(ABMC\) nội tiếp.
Vậy \(\widehat {NHA} + \widehat {AHP} = {180^0}\) hay \(N,H,P\) thẳng hàng.
Lời giải

a) Do \(AB,AC\) là hai tiếp tuyến cắt nhau của đường tròn \(\left( O \right)\) nên \(\widehat {ABO} = \widehat {ACO} = {90^0} \Rightarrow B,C\) thuộc đường tròn đường kính \(OA\) có tâm \(I\) là trung điểm \(OA\).
b) Ta có \(AM.AO = \frac{{AB}}{2}.2AI = AB.AI\).
c) Gọi \(E\) là trung điểm \(MA\), do \(G\) là trọng tâm \(\Delta CMA\) nên \(G \in CE\) và \(\frac{{GE}}{{CE}} = \frac{1}{3}\).
Mặt khác \(\frac{{ME}}{{BE}} = \frac{1}{3}\) (vì \(ME = \frac{{MA}}{2} = \frac{{MB}}{2}\) nên \(ME = \frac{{BE}}{3}\)) \( \Rightarrow \frac{{GE}}{{CE}} = \frac{{ME}}{{BE}}\), theo định lý Ta-lét đảo \( \Rightarrow MG//BC\).
d) Gọi \(G'\) là giao điểm của \(OA\) và \(CM \Rightarrow G'\) là trọng tâm \(\Delta ABC\). Nên \(\frac{{G'M}}{{CM}} = \frac{1}{3} = \frac{{GE}}{{CE'}}\), theo định lý Ta-lét đảo \(GG'//ME\) (1)
\(MI\) là đường trung bình trong \(\Delta OAB \Rightarrow MI//OB\), mà \(AB \bot OB\) (cmt) \( \Rightarrow MI \bot AB\), nghĩa là \(MI \bot ME\) (2).
Từ (1) và (2) cho \(MI \bot GG'\), ta lại có \(GI' \bot MK\) (vì \(OA \bot MK\)) nên \(I\) là trực tâm \(\Delta MGG'\)\( \Rightarrow GI \bot G'M\) tức \(GI \bot CM\).
Lời giải

Để chứng minh \(AMEN\) là tứ giác nội tiếp ta sẽ
chứng minh: \(\widehat {MAN} + \widehat {MEN} = {180^0}\).
Ta cần tìm sự liên hệ của các góc \(\widehat {MAN};\widehat {MEN}\) với các góc có sẵn của những tứ giác nội tiếp khác.
Ta có \(\widehat {MEN} = {360^0} - \left( {\widehat {MEH} + \widehat {NEH}} \right) = {360^0} - \left( {{{180}^0} - \widehat {ABC} + {{180}^0} - \widehat {ACB}} \right) = \widehat {ABC} + \widehat {ACB}\) \( = {180^0} - \widehat {BAC}\) suy ra \(\widehat {MEN} + \widehat {MAN} = {180^0}\). Hay tứ giác \(AMEN\) là tứ giác nội tiếp.
Kẻ \(MK \bot BC\), giả sử \(HE\) cắt \(MN\) tại \(I\) thì \(IH\) là cát tuyến của hai đường tròn \((BMH)\), \((CNH)\).
Lại có \(MB = MH = MA\) (Tính chất trung tuyến tam giác vuông).
Suy ra tam giác \(MBH\) cân tại \(M \Rightarrow KB = KH \Rightarrow MK\) luôn đi qua tâm đường tròn ngoại tiếp tam giác \(MBH\). Hay \(MN\) là tiếp tuyến của \((MBH)\) suy ra \(I{M^2} = IE.IH\), tương tự ta cũng có \(MN\) là tiếp tuyến của \(\left( {HNC} \right)\) suy ra \(I{N^2} = IE.IH\) do đó \(IM = IN\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Trong các đường tròn \[\left( O \right)\] sau, đường tròn nào ngoại tiếp tứ giác \[ABCD\] ? Giải thích. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/screenshot-5566-1769704261.png)