10 bài tập Ứng dụng định lí Viète trong phân tích đa thức ax2 + bx + c thành nhân tử có lời giải
37 người thi tuần này 4.6 37 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: D
Nếu x1, x2 là nghiệm của phương trình ax2 + bx + c = 0 (a ≠ 0) thì ta có thể viết:
ax2 + bx + c = a(x – x1)(x – x2).
Lời giải
Đáp án đúng là: B
Do phương trình x2 – 7x + 10 = 0 có hai nghiệm là 2 và 5 nên ta có:
x2 – 7x + 10 = (x – 2)(x – 5).
Lời giải
Đáp án đúng là: C
Phương trình 2x2 – 5x + 2 = 0 có a = 2, b = –5, c = 2.
Ta có \( - \frac{b}{a} = \frac{5}{2} = 2 + \frac{1}{2}\) và \(\frac{c}{a} = 1 = 2 \cdot \frac{1}{2}.\)
Do đó phương trình trên có hai nghiệm là x1 = 2; x2 = \(\frac{1}{2}.\)
Khi đó, ta có:
\[2{x^2}--5x + 2 = 2\left( {x - 2} \right)\left( {x - \frac{1}{2}} \right) = \left( {x - 2} \right)\left( {2x - 1} \right).\]
Lời giải
Đáp án đúng là: D
Xét phương trình x2 – 4x – 12 = 0 viết thành –x2 + 4x + 12 = 0, phương trình này có a = –1, b = 4, c = 12.
Ta có \( - \frac{b}{a} = 4 = - 2 + 6\) và \(\frac{c}{a} = - 12 = \left( { - 2} \right) \cdot 6.\)
Do đó phương trình trên có hai nghiệm là x1 = –2; x2 = 6.
Khi đó, ta có:
–x2 + 4x + 12 = –(x + 2)(x – 6) = (x + 2)(6 – x).
Lời giải
Đáp án đúng là: B
Phương trình \[\sqrt 2 {x^2} - \left( {2\sqrt 2 + 1} \right)x + 2 = 0\] có \(a = \sqrt 2 ,\,\,b = - \left( {2\sqrt 2 + 1} \right),\,\,c = 2.\)
Ta có \( - \frac{b}{a} = \frac{{2\sqrt 2 + 1}}{{\sqrt 2 }} = 2 + \frac{1}{{\sqrt 2 }}\) và \(\frac{c}{a} = \sqrt 2 = 2 \cdot \frac{1}{{\sqrt 2 }}.\)
Do đó phương trình trên có hai nghiệm là x1 = 2; x2 = \(\frac{1}{{\sqrt 2 }}.\)
Khi đó, ta có:
\[\sqrt 2 {x^2} - \left( {2\sqrt 2 + 1} \right)x + 2 = \sqrt 2 \left( {x - 2} \right)\left( {x - \frac{1}{{\sqrt 2 }}} \right) = \left( {x - 2} \right)\left( {\sqrt 2 x - 1} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.