15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài tập cuối chương I có đáp án
100 người thi tuần này 4.6 663 lượt thi 15 câu hỏi 60 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 1: Đại số)
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
50 câu Trắc nghiệm Toán 9 Bài 2: Tỉ số lượng giác của góc nhọn có đáp án (Phần 2)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Đáp án đúng là: C
Phương trình bậc nhất hai ẩn \[x,y\] là hệ thức dạng: \[ax + by = c,\] trong đó \[a,\,\,b,\,\,c\] là những số cho trước, \[a \ne 0\] hoặc \[b \ne 0.\]
Ta thấy hệ thức ở phương án C có cả hai số \[a,{\rm{ }}b\] đều bằng 0.
Do đó hệ thức ở phương án C không phải là phương trình bậc nhất hai ẩn.
Câu 2
Lời giải
Đáp án đúng là: A
Phương trình bậc nhất hai ẩn \[x,y\] là hệ thức dạng \[ax + by = c\] với \[a \ne 0\] hoặc \[b \ne 0.\]
Ta viết phương trình \[ - 7x - 12 = 0\] thành \( - 7x + 0y = 12\).
Do đó, ta có \[a = - 7,\,\,b = 0,\,\,c = 12.\]
Vậy ta chọn phương án A.
Câu 3
Lời giải
Đáp án đúng là: D
⦁ Thay \[x = - 1,y = 1\] vào phương trình \[3x - 2y + 1 = 0,\] ta được:
\[3 \cdot \left( { - 1} \right) - 2 \cdot 1 + 1 = - 4 \ne 0.\]
Do đó cặp số \[\left( { - 1;1} \right)\] không là nghiệm của phương trình \[3x - 2y + 1 = 0.\]
⦁ Thay \[x = 5,y = 3\] vào phương trình \[3x - 2y + 1 = 0,\] ta được:
\[3 \cdot 5 - 2 \cdot 3 + 1 = 10 \ne 0.\]
Do đó cặp số \[\left( {5;3} \right)\] không là nghiệm của phương trình \[3x - 2y + 1 = 0.\]
⦁ Thay \[x = 0,y = 1\] vào phương trình \[3x - 2y + 1 = 0,\] ta được:
\[3 \cdot 0 - 2 \cdot 1 + 1 = - 1 \ne 0.\]
Do đó cặp số \[\left( {0;1} \right)\] không là nghiệm của phương trình \[3x - 2y + 1 = 0.\]
⦁ Thay \[x = - 1,y = - 1\] vào phương trình \[3x - 2y + 1 = 0,\] ta được:
\[3 \cdot \left( { - 1} \right) - 2 \cdot \left( { - 1} \right) + 1 = 0\] (đúng).
Do đó cặp số \[\left( { - 1; - 1} \right)\] là nghiệm của phương trình \[3x - 2y + 1 = 0.\]
Vậy ta chọn phương án D.
Câu 4
Lời giải
Đáp án đúng là: B
Ta viết hệ phương trình \[\left\{ \begin{array}{l}2x + 9y = 10\\5y - 3x = - 6\end{array} \right.\] thành \[\left\{ \begin{array}{l}2x + 9y = 10\\ - 3x + 5y = - 6\end{array} \right.\] có dạng \[\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right..\]
Trong đó, \[a = 2,b = 9,c = 10\] và \[a' = - 3,b' = 5,c' = - 6.\]
Vậy ta chọn phương án B.
Câu 5
Lời giải
Đáp án đúng là: C
⦁ Thay \[x = 1,y = - 5\] vào phương trình \[x - 5y = 13,\] ta được: \[1 - 5 \cdot \left( { - 5} \right) = 26 \ne 13.\]
Do đó cặp số \[\left( {1; - 5} \right)\] không là nghiệm của hệ phương trình ở các phương án A, B.
⦁ Thay \[x = 1,y = - 5\] vào mỗi phương trình trong hệ ở phương án C, ta được:
\[1 - \left( { - 5} \right) = 6\] (đúng);
\[2 \cdot 1 + \left( { - 5} \right) = - 3\] (đúng).
Do đó cặp số \[\left( {1; - 5} \right)\] là nghiệm của từng phương trình trong hệ phương trình ở phương án C.
Vì vậy cặp số \[\left( {1; - 5} \right)\] là nghiệm của hệ phương trình ở phương án C.
⦁ Thay \[x = 1,y = - 5\] vào phương trình \[x + y = 8,\] ta được: \[1 + \left( { - 5} \right) = - 4 \ne 8\]
Do đó cặp số \[\left( {1; - 5} \right)\] không là nghiệm của hệ phương trình ở phương án D.
Vậy ta chọn phương án C.
Câu 6
A. Hình 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.