15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài tập cuối chương I có đáp án
76 người thi tuần này 4.6 362 lượt thi 15 câu hỏi 60 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
123 bài tập Nón trụ cầu và hình khối có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: C
Phương trình bậc nhất hai ẩn \[x,y\] là hệ thức dạng: \[ax + by = c,\] trong đó \[a,\,\,b,\,\,c\] là những số cho trước, \[a \ne 0\] hoặc \[b \ne 0.\]
Ta thấy hệ thức ở phương án C có cả hai số \[a,{\rm{ }}b\] đều bằng 0.
Do đó hệ thức ở phương án C không phải là phương trình bậc nhất hai ẩn.
Lời giải
Đáp án đúng là: A
Phương trình bậc nhất hai ẩn \[x,y\] là hệ thức dạng \[ax + by = c\] với \[a \ne 0\] hoặc \[b \ne 0.\]
Ta viết phương trình \[ - 7x - 12 = 0\] thành \( - 7x + 0y = 12\).
Do đó, ta có \[a = - 7,\,\,b = 0,\,\,c = 12.\]
Vậy ta chọn phương án A.
Lời giải
Đáp án đúng là: D
⦁ Thay \[x = - 1,y = 1\] vào phương trình \[3x - 2y + 1 = 0,\] ta được:
\[3 \cdot \left( { - 1} \right) - 2 \cdot 1 + 1 = - 4 \ne 0.\]
Do đó cặp số \[\left( { - 1;1} \right)\] không là nghiệm của phương trình \[3x - 2y + 1 = 0.\]
⦁ Thay \[x = 5,y = 3\] vào phương trình \[3x - 2y + 1 = 0,\] ta được:
\[3 \cdot 5 - 2 \cdot 3 + 1 = 10 \ne 0.\]
Do đó cặp số \[\left( {5;3} \right)\] không là nghiệm của phương trình \[3x - 2y + 1 = 0.\]
⦁ Thay \[x = 0,y = 1\] vào phương trình \[3x - 2y + 1 = 0,\] ta được:
\[3 \cdot 0 - 2 \cdot 1 + 1 = - 1 \ne 0.\]
Do đó cặp số \[\left( {0;1} \right)\] không là nghiệm của phương trình \[3x - 2y + 1 = 0.\]
⦁ Thay \[x = - 1,y = - 1\] vào phương trình \[3x - 2y + 1 = 0,\] ta được:
\[3 \cdot \left( { - 1} \right) - 2 \cdot \left( { - 1} \right) + 1 = 0\] (đúng).
Do đó cặp số \[\left( { - 1; - 1} \right)\] là nghiệm của phương trình \[3x - 2y + 1 = 0.\]
Vậy ta chọn phương án D.
Lời giải
Đáp án đúng là: B
Ta viết hệ phương trình \[\left\{ \begin{array}{l}2x + 9y = 10\\5y - 3x = - 6\end{array} \right.\] thành \[\left\{ \begin{array}{l}2x + 9y = 10\\ - 3x + 5y = - 6\end{array} \right.\] có dạng \[\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right..\]
Trong đó, \[a = 2,b = 9,c = 10\] và \[a' = - 3,b' = 5,c' = - 6.\]
Vậy ta chọn phương án B.
Lời giải
Đáp án đúng là: C
⦁ Thay \[x = 1,y = - 5\] vào phương trình \[x - 5y = 13,\] ta được: \[1 - 5 \cdot \left( { - 5} \right) = 26 \ne 13.\]
Do đó cặp số \[\left( {1; - 5} \right)\] không là nghiệm của hệ phương trình ở các phương án A, B.
⦁ Thay \[x = 1,y = - 5\] vào mỗi phương trình trong hệ ở phương án C, ta được:
\[1 - \left( { - 5} \right) = 6\] (đúng);
\[2 \cdot 1 + \left( { - 5} \right) = - 3\] (đúng).
Do đó cặp số \[\left( {1; - 5} \right)\] là nghiệm của từng phương trình trong hệ phương trình ở phương án C.
Vì vậy cặp số \[\left( {1; - 5} \right)\] là nghiệm của hệ phương trình ở phương án C.
⦁ Thay \[x = 1,y = - 5\] vào phương trình \[x + y = 8,\] ta được: \[1 + \left( { - 5} \right) = - 4 \ne 8\]
Do đó cặp số \[\left( {1; - 5} \right)\] không là nghiệm của hệ phương trình ở phương án D.
Vậy ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
72 Đánh giá
50%
40%
0%
0%
0%