Câu hỏi:
11/10/2024 288Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Xét phương trình \(\left\{ \begin{array}{l}x - my = 1\,\,\,\,\left( 1 \right)\\mx + y = 3\,\,\,\left( 2 \right)\end{array} \right.\)
Từ phương trình (1), ta có: \(x = my + 1.\,\,\,\left( 3 \right)\)
Thế phương trình (3) vào phương trình (2), ta được:
\(m\left( {my + 1} \right) + y = 3\)
\({m^2}y + m + y = 3\)
\(\left( {{m^2} + 1} \right)y = 3 - m\)
\(y = \frac{{3 - m}}{{{m^2} + 1}}\) (do \({m^2} + 1 \ne 0)\)
Thay \(y = \frac{{3 - m}}{{{m^2} + 1}}\) vào phương trình (3), ta được:
\(x = m \cdot \frac{{3 - m}}{{{m^2} + 1}} + 1 = \frac{{3m - {m^2} + {m^2} + 1}}{{{m^2} + 1}} = \frac{{3m + 1}}{{{m^2} + 1}}.\)
Như vậy, hệ phương trình đã cho có nghiệm là \(\left( {{x_0};\,\,{y_0}} \right) = \left( {\frac{{3m + 1}}{{{m^2} + 1}};\,\,\frac{{3 - m}}{{{m^2} + 1}}} \right)\).
Ta có: \(P = x_0^2 + y_0^2 - {x_0} - 3{y_0} = {\left( {\frac{{3m + 1}}{{{m^2} + 1}}} \right)^2} + {\left( {\frac{{3 - m}}{{{m^2} + 1}}} \right)^2} - \frac{{3m + 1}}{{{m^2} + 1}} - 3 \cdot \frac{{3 - m}}{{{m^2} + 1}}\)
\[ = \frac{{{{\left( {3m + 1} \right)}^2} + {{\left( {3 - m} \right)}^2} - \left( {3m + 1} \right)\left( {{m^2} + 1} \right) - 3\left( {3 - m} \right)\left( {{m^2} + 1} \right)}}{{{{\left( {{m^2} + 1} \right)}^2}}}\]
\[ = \frac{{9{m^2} + 6m + 1 + 9 - 6m + {m^2} - \left( {3{m^3} + 3m + {m^2} + 1} \right) - \left( {9{m^2} + 9 - 3{m^3} - 3m} \right)}}{{{{\left( {{m^2} + 1} \right)}^2}}}\]
\[ = \frac{{9{m^2} + 6m + 1 + 9 - 6m + {m^2} - 3{m^3} - 3m - {m^2} - 1 - 9{m^2} - 9 + 3{m^3} + 3m}}{{{{\left( {{m^2} + 1} \right)}^2}}}\]
\[ = \frac{0}{{{{\left( {{m^2} + 1} \right)}^2}}} = 0.\]
Vậy \(P = 0,\) ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
I. Nhân biết
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
về câu hỏi!