I. Nhân biết
Quảng cáo
Trả lời:

Đáp án đúng là: C
Phương trình bậc nhất hai ẩn \[x,y\] là hệ thức dạng: \[ax + by = c,\] trong đó \[a,\,\,b,\,\,c\] là những số cho trước, \[a \ne 0\] hoặc \[b \ne 0.\]
Ta thấy hệ thức ở phương án C có cả hai số \[a,{\rm{ }}b\] đều bằng 0.
Do đó hệ thức ở phương án C không phải là phương trình bậc nhất hai ẩn.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Gọi \[x,y\] lần lượt là số sách ở ngăn thứ nhất, ngăn thứ hai ban đầu \[\left( {x,y \in {\mathbb{N}^ * }} \right).\]
Vì tổng số sách hai ngăn là \[500\] cuốn nên ta có phương trình: \[x + y = 500\] (1)
Sau khi chuyển \[75\] cuốn sách từ ngăn thứ nhất sang ngăn thứ hai thì số sách ở ngăn thứ hai gấp \[3\] lần số sách ở ngăn thứ nhất, thì:
⦁ Số sách ở ngăn thứ nhất lúc này là \(x - 75\) (cuốn);
⦁ Số sách ở ngăn thứ hai lúc này là \(y + 75\) (cuốn).
Ta có phương trình: \[y + 75 = 3\left( {x - 75} \right)\] (2)
Từ (1) và (2), ta có hệ phương trình: \[\left\{ \begin{array}{l}x + y = 500\\y + 75 = 3\left( {x - 75} \right)\end{array} \right.\] hay \[\left\{ \begin{array}{l}x + y = 500\\3x - y = 300\end{array} \right.\]
Giải hệ phương trình trên, ta được: \[\left\{ \begin{array}{l}x = 200\\y = 300\end{array} \right.\] (thỏa mãn điều kiện \[x,y \in {\mathbb{N}^ * }).\]
Vậy lúc đầu ngăn thứ nhất có \[200\] cuốn sách, ngăn thứ hai có \[300\] cuốn sách.
Do đó ta chọn phương án A.
Câu 2
Lời giải
Đáp án đúng là: B
Xét phương trình \(\left\{ \begin{array}{l}x - my = 1\,\,\,\,\left( 1 \right)\\mx + y = 3\,\,\,\left( 2 \right)\end{array} \right.\)
Từ phương trình (1), ta có: \(x = my + 1.\,\,\,\left( 3 \right)\)
Thế phương trình (3) vào phương trình (2), ta được:
\(m\left( {my + 1} \right) + y = 3\)
\({m^2}y + m + y = 3\)
\(\left( {{m^2} + 1} \right)y = 3 - m\)
\(y = \frac{{3 - m}}{{{m^2} + 1}}\) (do \({m^2} + 1 \ne 0)\)
Thay \(y = \frac{{3 - m}}{{{m^2} + 1}}\) vào phương trình (3), ta được:
\(x = m \cdot \frac{{3 - m}}{{{m^2} + 1}} + 1 = \frac{{3m - {m^2} + {m^2} + 1}}{{{m^2} + 1}} = \frac{{3m + 1}}{{{m^2} + 1}}.\)
Như vậy, hệ phương trình đã cho có nghiệm là \(\left( {{x_0};\,\,{y_0}} \right) = \left( {\frac{{3m + 1}}{{{m^2} + 1}};\,\,\frac{{3 - m}}{{{m^2} + 1}}} \right)\).
Ta có: \(P = x_0^2 + y_0^2 - {x_0} - 3{y_0} = {\left( {\frac{{3m + 1}}{{{m^2} + 1}}} \right)^2} + {\left( {\frac{{3 - m}}{{{m^2} + 1}}} \right)^2} - \frac{{3m + 1}}{{{m^2} + 1}} - 3 \cdot \frac{{3 - m}}{{{m^2} + 1}}\)
\[ = \frac{{{{\left( {3m + 1} \right)}^2} + {{\left( {3 - m} \right)}^2} - \left( {3m + 1} \right)\left( {{m^2} + 1} \right) - 3\left( {3 - m} \right)\left( {{m^2} + 1} \right)}}{{{{\left( {{m^2} + 1} \right)}^2}}}\]
\[ = \frac{{9{m^2} + 6m + 1 + 9 - 6m + {m^2} - \left( {3{m^3} + 3m + {m^2} + 1} \right) - \left( {9{m^2} + 9 - 3{m^3} - 3m} \right)}}{{{{\left( {{m^2} + 1} \right)}^2}}}\]
\[ = \frac{{9{m^2} + 6m + 1 + 9 - 6m + {m^2} - 3{m^3} - 3m - {m^2} - 1 - 9{m^2} - 9 + 3{m^3} + 3m}}{{{{\left( {{m^2} + 1} \right)}^2}}}\]
\[ = \frac{0}{{{{\left( {{m^2} + 1} \right)}^2}}} = 0.\]
Vậy \(P = 0,\) ta chọn phương án B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Hình 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.