Câu hỏi:

11/10/2024 169 Lưu

Cặp số \[\left( {1; - 5} \right)\] là nghiệm của hệ phương trình nào trong các hệ phương trình sau đây? 

A. \[\left\{ \begin{array}{l}x - 5y = 13\\x - y = 3.\end{array} \right.\] 
B. \[\left\{ \begin{array}{l}x - 5y = 13\\2x - 3y = - 1.\end{array} \right.\]
C. \[\left\{ \begin{array}{l}x - y = 6\\2x + y = - 3.\end{array} \right.\] 
D. \[\left\{ \begin{array}{l}x + y = 8\\x - y = 3.\end{array} \right.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Thay \[x = 1,y = - 5\] vào phương trình \[x - 5y = 13,\] ta được: \[1 - 5 \cdot \left( { - 5} \right) = 26 \ne 13.\]

Do đó cặp số \[\left( {1; - 5} \right)\] không là nghiệm của hệ phương trình ở các phương án A, B.

Thay \[x = 1,y = - 5\] vào mỗi phương trình trong hệ ở phương án C, ta được:

\[1 - \left( { - 5} \right) = 6\] (đúng);

\[2 \cdot 1 + \left( { - 5} \right) = - 3\] (đúng).

Do đó cặp số \[\left( {1; - 5} \right)\] là nghiệm của từng phương trình trong hệ phương trình ở phương án C.

Vì vậy cặp số \[\left( {1; - 5} \right)\] là nghiệm của hệ phương trình ở phương án C.

Thay \[x = 1,y = - 5\] vào phương trình \[x + y = 8,\] ta được: \[1 + \left( { - 5} \right) = - 4 \ne 8\]

Do đó cặp số \[\left( {1; - 5} \right)\] không là nghiệm của hệ phương trình ở phương án D.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi \[x,y\] lần lượt là số sách ở ngăn thứ nhất, ngăn thứ hai ban đầu \[\left( {x,y \in {\mathbb{N}^ * }} \right).\]

Vì tổng số sách hai ngăn là \[500\] cuốn nên ta có phương trình: \[x + y = 500\]     (1)

Sau khi chuyển \[75\] cuốn sách từ ngăn thứ nhất sang ngăn thứ hai thì số sách ở ngăn thứ hai gấp \[3\] lần số sách ở ngăn thứ nhất, thì:

Số sách ở ngăn thứ nhất lúc này là \(x - 75\) (cuốn);

Số sách ở ngăn thứ hai lúc này là \(y + 75\) (cuốn).

Ta có phương trình: \[y + 75 = 3\left( {x - 75} \right)\]        (2)

Từ (1) và (2), ta có hệ phương trình: \[\left\{ \begin{array}{l}x + y = 500\\y + 75 = 3\left( {x - 75} \right)\end{array} \right.\] hay \[\left\{ \begin{array}{l}x + y = 500\\3x - y = 300\end{array} \right.\]

Giải hệ phương trình trên, ta được: \[\left\{ \begin{array}{l}x = 200\\y = 300\end{array} \right.\] (thỏa mãn điều kiện \[x,y \in {\mathbb{N}^ * }).\]

Vậy lúc đầu ngăn thứ nhất có \[200\] cuốn sách, ngăn thứ hai có \[300\] cuốn sách.

Do đó ta chọn phương án A.

Câu 2

A. \[2x + 3y = - 5.\] 
B. \[0x - 7y = 1.\]
C. \[0x + 0y = 2.\] 
D. \[4x - 0y = 11.\]

Lời giải

Đáp án đúng là: C

Phương trình bậc nhất hai ẩn \[x,y\] là hệ thức dạng: \[ax + by = c,\] trong đó \[a,\,\,b,\,\,c\] là những số cho trước, \[a \ne 0\] hoặc \[b \ne 0.\]

Ta thấy hệ thức ở phương án C có cả hai số \[a,{\rm{ }}b\] đều bằng 0.

Do đó hệ thức ở phương án C không phải là phương trình bậc nhất hai ẩn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left( { - 1;1} \right).\] 
B. \[\left( {5;3} \right).\] 
C. \[\left( {0;1} \right).\] 
D. \[\left( { - 1; - 1} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[a = - 7,b = 0,c = 12.\] 
B. \[a = - 7,b = - 12,c = 0.\]
C. \[a = 0,b = - 7,c = 12.\] 
D. \[a = 0,b = - 12,c = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hình 1.                

B. Hình 2.                 
C. Hình 3.                
D. Hình 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP