Câu hỏi:

29/01/2026 7 Lưu

Cho tam giác \(ABC\) nhọn nội tiếp đường tròn tâm \(O\), đường cao \(BE\) và \(CF\). Tiếp tuyến tại \(B\) và \(C\) cắt nhau tại \(S\), \(BC\) và \(OS\) cắt nhau tại \(M\).

a) Chứng minh rằng \(AB.MB = AE.BS\).

b) Hai tam giác \(AEM\) và \(ABS\) đồng dạng.

c) Gọi \(AM\) cắt \(EF\) tại \(N\), \(AS\) cắt \(BC\) tại \(P\). Chứng minh rằng \(NP \bot BC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác \(ABC\) nhọn nội tiếp đường tròn tâm (ảnh 1)

a) Ta chứng minh \(\Delta ABE \sim \Delta BSM\).

b) Từ câu a ta có \(\frac{{AE}}{{AB}} = \frac{{MB}}{{BS}}\)  (1)

mà \(MB = EM\) (do \(\Delta BEC\) vuông tại \[E\] có \(M\) là trung điểm của \(BC\))

nên \[\frac{{AE}}{{AB}} = \frac{{EM}}{{BS}}\]   Có \(\widehat {MOB} = \widehat {BAE};\widehat {EBA} + \widehat {BAE} = {90^0};\)

\(\widehat {MBO} + \widehat {MOB} = {90^0}\) nên \(\widehat {MBO} = \widehat {EBA}\)

do đó \(\widehat {MEB} = \widehat {OBA} = \widehat {MBE}\). Suy ra \(\widehat {MEA} = \widehat {SBA}\)   (2)

Từ (1) và (2) suy ra \(\Delta AME \sim \Delta ABS\)   (đpcm).

c) Dễ thấy \(SM\) vuông góc với \(BC\) nên ta chứng minh \(NP//SM\).

Xét \(\Delta ANE\) và \(\Delta APB\): Từ câu b) ta có \(\Delta AEM \sim \Delta ABS\) nên \(\widehat {NAE} = \widehat {PAB}\). Mà \(\widehat {AEN} = \widehat {ABP}\) (do tứ giác \(BCEF\) nội tiếp). Do đó \(\Delta ANE \sim \Delta APB\) nên \(\frac{{AN}}{{AP}} = \frac{{AE}}{{AB}}\).

Lại có \(\frac{{AM}}{{AS}} = \frac{{AE}}{{AB}}\left( {\Delta AEM \sim \Delta ABS} \right)\). Suy ra \(\frac{{AM}}{{AS}} = \frac{{AN}}{{AP}}\) nên trong tam giác \[AMS\] có \(NP//SM\) (định lý Talet đảo). Do đó bài toán được chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn \(\left( {O;R} \right)\) và điểm \(A\ (ảnh 1)

a) Do \(AB,AC\) là hai tiếp tuyến cắt nhau của đường tròn \(\left( O \right)\) nên \(\widehat {ABO} = \widehat {ACO} = {90^0} \Rightarrow B,C\) thuộc đường tròn đường kính  \(OA\) có tâm \(I\) là trung điểm \(OA\).  

b) Ta có \(AM.AO = \frac{{AB}}{2}.2AI = AB.AI\).                                                                                     

c) Gọi \(E\) là trung điểm \(MA\), do \(G\) là trọng tâm \(\Delta CMA\) nên \(G \in CE\) và \(\frac{{GE}}{{CE}} = \frac{1}{3}\).

Mặt khác \(\frac{{ME}}{{BE}} = \frac{1}{3}\)  (vì \(ME = \frac{{MA}}{2} = \frac{{MB}}{2}\) nên \(ME = \frac{{BE}}{3}\)) \( \Rightarrow \frac{{GE}}{{CE}} = \frac{{ME}}{{BE}}\), theo định lý Ta-lét đảo \( \Rightarrow MG//BC\).

d) Gọi \(G'\) là giao điểm của \(OA\) và \(CM \Rightarrow G'\) là trọng tâm \(\Delta ABC\). Nên \(\frac{{G'M}}{{CM}} = \frac{1}{3} = \frac{{GE}}{{CE'}}\), theo định lý Ta-lét đảo \(GG'//ME\)  (1)

\(MI\) là đường trung bình trong \(\Delta OAB \Rightarrow MI//OB\), mà \(AB \bot OB\)  (cmt) \( \Rightarrow MI \bot AB\), nghĩa là \(MI \bot ME\)   (2).

Từ (1) và (2) cho \(MI \bot GG'\), ta lại có \(GI' \bot MK\) (vì \(OA \bot MK\)) nên \(I\) là trực tâm \(\Delta MGG'\)\( \Rightarrow GI \bot G'M\) tức \(GI \bot CM\).

Lời giải

Cho tam giác \(ABC\) có 3 góc nhọ (ảnh 1)

a). Giả sử các đường cao của tam giác là \(AK,CI\) . Để chứng minh \(AHCP\) là tứ giác nội tiếp ta sẽ chứng minh \(\widehat {AHC} + \widehat {APC} = {180^0}\).

Ta có:

     \(\widehat {AHC} = \widehat {IHK}\) ( đối đỉnh)

     \(\widehat {APC} = \widehat {AMC} = \widehat {ABC}\) ( do tính đối xứng và góc nội tiếp cùng chắn một cung).

Như vậy ta chỉ cần chứng minh \(\widehat {ABC} + \widehat {IHK} = {180^0}\) nhưng điều này là hiển nhiên do tứ giác \(BIHK\)là tứ giác nội tiếp.

b). Để chứng minh \(N,H,P\) thẳng hàng ta sẽ chứng minh \(\widehat {NHA} + \widehat {AHP} = {180^0}\) do đó ta sẽ tìm cách quy hai góc này về 2 góc đối nhau trong một tứ giác nội tiếp.

Thật vậy ta có: \(\widehat {AHP} = \widehat {ACP}\) (tính chất góc nội tiếp), \(\widehat {ACP} = \widehat {ACM}\)  (1) (Tính chất đối xứng) .

Ta thấy vai trò tứ giác \(AHCP\) giống với \(AHBN\) nên ta cũng dễ chứng minh được \(AHBN\) là tứ giác nội tiếp từ đó suy ra \(\widehat {AHN} = \widehat {ABN}\) , mặt khác \(\widehat {ABN} = \widehat {ABM}\) (2) (Tính chất đối xứng) .

Từ (1), (2) ta suy ra chỉ cần chứng minh \(\widehat {ABM} + \widehat {ACM} = {180^0}\) nhưng điều này là hiển nhiên do tứ giác \(ABMC\) nội tiếp.

Vậy \(\widehat {NHA} + \widehat {AHP} = {180^0}\) hay \(N,H,P\) thẳng hàng.