Câu hỏi:

29/01/2026 8 Lưu

Cho đường tròn \((O)\). Từ một điểm \(M\). ở ngoài đường tròn \((O)\), kẻ hai tiếp tuyến \(MA,MB\) với đường tròn \((O)(A,B\) là hai tiếp điểm).

a) Chứng minh \(MAOB\) là tứ giác nội tiếp.

b) Vẽ đường kính \(BK\) của đường tròn \((O)\), \(H\) là điểm trên \(BK\) sao cho \(AH\) vuông góc \(BK\). Điểm \(I\) là giao điểm của \(AH,MK\). Chứng minh \(I\) là trung điểm của \(HA\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho đường tròn \((O)\). Từ một điểm \ (ảnh 1)

a) Chứng minh \(MAOB\) là tứ giác nội tiếp.

Vì \(MA,MB\) là các tiếp tuyến của \((O)\) lần lượt tại \(A,B\) nên \(\widehat {MAO} = \widehat {MBO} = 90^\circ \) (định nghĩa).

Tứ giác \(MAOB\) có \(\widehat {MAO} + \widehat {MBO} = 180^\circ \).

Suy ra tứ giác \(MAOB\) nội tiếp (tứ giác có tổng hai góc đối bằng bằng \(180^\circ \)).

b) Vẽ đường kính \(BK\) của đường tròn \((O)\), \(H\) là điểm trên \(BK\) sao cho \(AH\) vuông góc \(BK\). Điểm \(I\) là giao điểm của \(AH,MK\). Chứng minh \(I\) là trung điểm của \(HA\).

Gọi \(N\) là giao điểm của \(AB\) với \(MO\).

\(C\) là giao điểm giữa \(MK\) với đường tròn \((O)\)

Ta có: \(OA = OB \Rightarrow O\) thuộc trung trực của \(AB\).

Tứ giác \(MCNB\) có \(\widehat {MCB} = \widehat {MNB} = 90^\circ \). Suy ra tứ giác \(MCNB\) nội tiếp (tứ giác có hai đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau).

\( \Rightarrow \widehat {NMB} = \widehat {NCB}\) (hai góc cùng chắn một cung \(BN\) )

Ta có: \(\widehat {NMB} = \widehat {NBO}\) (cùng phụ với \(\widehat {MBN}\) )

\( \Rightarrow \widehat {NCB} = \widehat {NBO}.\)

Lại có: \(\widehat {NCB} + \widehat {NCI} = 90^\circ ,\widehat {NAI} + \widehat {NBO} = 90^\circ \)

Suy ra \(\widehat {NCI} = \widehat {NAI}\).

Xét tứ giác \(ACNI\) có: \(\widehat {NCI} = \widehat {NAI}(cmt)\), suy ra tứ giác \(ACNI\) nội tiếp (tứ giác có 2 đinh kề cùng nhìn một cạnh dưới các góc bằng nhau).

\( \Rightarrow \widehat {ANI} = \widehat {ACI}\) (hai góc cùng chắn cung \(AI\) ).

Trong \((O)\) có: \(\widehat {ACI} = \widehat {ABK}\) (hai góc nội tiếp cùng chấn cung \(AK\) )

Suy ra \(\widehat {ANI} = \widehat {ABK}\). Mà hai góc này vị trí đồng vị \( \Rightarrow NI//BK\)

Tam giác \(ABK\) có: \(\left\{ {\begin{array}{*{20}{l}}{NI//BK}\\{NA = NB = \frac{1}{2}AB}\end{array}} \right.\)

Suy ra \(I\) là trung điểm của \(AH \Rightarrow IA = IH\) (định lí đường trung bình của tam giác) (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) có 3 góc nhọ (ảnh 1)

a). Giả sử các đường cao của tam giác là \(AK,CI\) . Để chứng minh \(AHCP\) là tứ giác nội tiếp ta sẽ chứng minh \(\widehat {AHC} + \widehat {APC} = {180^0}\).

Ta có:

     \(\widehat {AHC} = \widehat {IHK}\) ( đối đỉnh)

     \(\widehat {APC} = \widehat {AMC} = \widehat {ABC}\) ( do tính đối xứng và góc nội tiếp cùng chắn một cung).

Như vậy ta chỉ cần chứng minh \(\widehat {ABC} + \widehat {IHK} = {180^0}\) nhưng điều này là hiển nhiên do tứ giác \(BIHK\)là tứ giác nội tiếp.

b). Để chứng minh \(N,H,P\) thẳng hàng ta sẽ chứng minh \(\widehat {NHA} + \widehat {AHP} = {180^0}\) do đó ta sẽ tìm cách quy hai góc này về 2 góc đối nhau trong một tứ giác nội tiếp.

Thật vậy ta có: \(\widehat {AHP} = \widehat {ACP}\) (tính chất góc nội tiếp), \(\widehat {ACP} = \widehat {ACM}\)  (1) (Tính chất đối xứng) .

Ta thấy vai trò tứ giác \(AHCP\) giống với \(AHBN\) nên ta cũng dễ chứng minh được \(AHBN\) là tứ giác nội tiếp từ đó suy ra \(\widehat {AHN} = \widehat {ABN}\) , mặt khác \(\widehat {ABN} = \widehat {ABM}\) (2) (Tính chất đối xứng) .

Từ (1), (2) ta suy ra chỉ cần chứng minh \(\widehat {ABM} + \widehat {ACM} = {180^0}\) nhưng điều này là hiển nhiên do tứ giác \(ABMC\) nội tiếp.

Vậy \(\widehat {NHA} + \widehat {AHP} = {180^0}\) hay \(N,H,P\) thẳng hàng.

Lời giải

Cho đường tròn \(\left( {O;R} \right)\) và điểm \(A\ (ảnh 1)

a) Do \(AB,AC\) là hai tiếp tuyến cắt nhau của đường tròn \(\left( O \right)\) nên \(\widehat {ABO} = \widehat {ACO} = {90^0} \Rightarrow B,C\) thuộc đường tròn đường kính  \(OA\) có tâm \(I\) là trung điểm \(OA\).  

b) Ta có \(AM.AO = \frac{{AB}}{2}.2AI = AB.AI\).                                                                                     

c) Gọi \(E\) là trung điểm \(MA\), do \(G\) là trọng tâm \(\Delta CMA\) nên \(G \in CE\) và \(\frac{{GE}}{{CE}} = \frac{1}{3}\).

Mặt khác \(\frac{{ME}}{{BE}} = \frac{1}{3}\)  (vì \(ME = \frac{{MA}}{2} = \frac{{MB}}{2}\) nên \(ME = \frac{{BE}}{3}\)) \( \Rightarrow \frac{{GE}}{{CE}} = \frac{{ME}}{{BE}}\), theo định lý Ta-lét đảo \( \Rightarrow MG//BC\).

d) Gọi \(G'\) là giao điểm của \(OA\) và \(CM \Rightarrow G'\) là trọng tâm \(\Delta ABC\). Nên \(\frac{{G'M}}{{CM}} = \frac{1}{3} = \frac{{GE}}{{CE'}}\), theo định lý Ta-lét đảo \(GG'//ME\)  (1)

\(MI\) là đường trung bình trong \(\Delta OAB \Rightarrow MI//OB\), mà \(AB \bot OB\)  (cmt) \( \Rightarrow MI \bot AB\), nghĩa là \(MI \bot ME\)   (2).

Từ (1) và (2) cho \(MI \bot GG'\), ta lại có \(GI' \bot MK\) (vì \(OA \bot MK\)) nên \(I\) là trực tâm \(\Delta MGG'\)\( \Rightarrow GI \bot G'M\) tức \(GI \bot CM\).