12 bài tập Tìm giá trị x để biểu thức đạt giá trị là số nguyên có lời giải
40 người thi tuần này 4.6 164 lượt thi 12 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
30 bài tập Toán 9 Cánh diều Ôn tập cuối chương 6 có đáp án
46 câu Trắc nghiệm Toán 9 Cánh diều Ôn tập cuối chương 6 có đáp án
13 bài tập Xác suất của biến cố (có lời giải)
5 bài tập Kết quả thuận lợi cho một biến cố (có lời giải)
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Với x > 0, x ≠ 4, x ≠ \(\frac{9}{4}\), ta có:
\(A = \frac{{\sqrt x }}{{x - 2\sqrt x }} + \frac{3}{{\sqrt x }} = \frac{{\sqrt x }}{{\left( {\sqrt x - 2} \right)\sqrt x }} + \frac{{3\left( {\sqrt x - 2} \right)}}{{\sqrt x \left( {\sqrt x - 2} \right)}} = \frac{{4\sqrt x - 6}}{{\sqrt x \left( {\sqrt x - 2} \right)}}\).
Có P = \(\frac{B}{A}\) = \(\frac{2}{{\sqrt x - 2}}:\frac{{4\sqrt x - 6}}{{\sqrt x \left( {\sqrt x - 2} \right)}} = \frac{2}{{\sqrt x - 2}}.\frac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{4\sqrt x - 6}} = \frac{{\sqrt x }}{{2\sqrt x - 3}}\).
Ta có: \(P = \frac{{\sqrt x }}{{2\sqrt x - 3}} = \frac{1}{{2 - \frac{3}{{\sqrt x }}}}\) (vì x > 0 nên \(\sqrt x > 0\)).
P nhận giá trị nguyên khi và chỉ khi \(\frac{1}{{2 - \frac{3}{{\sqrt x }}}}\) nguyên
hay \(2 - \frac{3}{{\sqrt x }}\) ∈ Ư(1) = {1; −1}.
Khi đó P = 1 hoặc P = −1.
Với P = 1 hay \(2 - \frac{3}{{\sqrt x }}\) = 1 khi \(\sqrt x \) = 3 suy ra x = 9 (thỏa mãn).
Với P = −1 hay \(2 - \frac{3}{{\sqrt x }} = - 1\) khi \(\sqrt x = 1\) suy ra x = 1 (thỏa mãn).
Vậy x ∈ {1; 9} thì P nhận giá trị nguyên.
Lời giải
Hướng dẫn giải
Với x > 0, x ≠ 4, ta có:
\(B = \frac{1}{{\sqrt x + 2}} + \frac{{\sqrt x }}{{2 - \sqrt x }} + \frac{{2x - \sqrt x + 2}}{{x - 4}}\)
\(B = \frac{{\sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} - \frac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} + \frac{{2x - \sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)
\(B = \frac{{\sqrt x - 2 - x - 2\sqrt x + 2x - \sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)
\(B = \frac{{x - 2\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x }}{{\sqrt x + 2}}\).
Vậy B = \(\frac{{\sqrt x }}{{\sqrt x + 2}}\) với x > 0, x ≠ 4.
Ta có: P = A.B = \(\frac{{x - 7}}{{\sqrt x }}.\frac{{\sqrt x }}{{\sqrt x + 2}} = \frac{{x - 7}}{{\sqrt x + 2}}\).
Xét P = 0 khi \(\frac{{x - 7}}{{\sqrt x + 2}} = 0\) suy ra x – 7 = 0 (thỏa mãn điều kiện).
Xét P ≠ 0.
TH1: x ∈ ℤ; x ≠ 7; \(\sqrt x \) là số vô tỉ thì P ∉ ℤ (loại).
TH2: x ∈ ℤ; \(\sqrt x \)∈ ℤ.
Ta có: \(P = \frac{{x - 4 - 3}}{{\sqrt x + 2}} = \frac{{x - 4}}{{\sqrt x + 2}} - \frac{3}{{\sqrt x + 2}} = \sqrt x - 2 - \frac{3}{{\sqrt x + 2}}\).
Để P ∈ ℤ thì \(\sqrt x - 2 - \frac{3}{{\sqrt x + 2}}\) ∈ ℤ suy ra \(\frac{3}{{\sqrt x + 2}}\) ∈ ℤ.
Do đó, \(\left( {\sqrt x + 2} \right) \in \)Ư(3).
Mà Ư(3) = {1; 3; −1; −3}.
Do \(\sqrt x + 2\) ≥ 2 nên \(\sqrt x + 2\) = 3 suy ra \(\sqrt x = 1\) suy ra x = 1 (thỏa mãn).
Vậy x ∈ {1; 7} thì P có giá trị nguyên.
Lời giải
Hướng dẫn giải
Với x ≥ 0; x ≠ 9, ta có:
\(A = \frac{{3\sqrt x - 21}}{{x - 9}} + \frac{2}{{\sqrt x - 3}}\)
\(A = \frac{{3\sqrt x - 21}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} + \frac{{2\left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\)
\(A = \frac{{3\sqrt x - 21 + 2\sqrt x + 6}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\)
\(A = \frac{{5\sqrt x - 15}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} = \frac{{5\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} = \frac{5}{{\sqrt x + 3}}\).
Để A nhận giá trị nguyên thì \(\frac{5}{{\sqrt x + 3}}\) nguyên.
Suy ra \(\sqrt x + 3\) là Ư(5).
Mà Ư(5) = {1; 5; −1; −5}.
Nhận thấy \(\sqrt x + 3\) ≥ 3 với vọi x ≥ 0; x ≠ 9.
Do đó, \(\sqrt x + 3\) = 5, suy ra \(\sqrt x \) = 2 do đó, x = 4 (thỏa mãn).
Vậy x = 4 thì A nhận giá trị nguyên.
Lời giải
Hướng dẫn giải
a) Với x ≥ 0; x ≠ 4; x ≠ 9, ta có:
\(M = \frac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \frac{{\sqrt x + 3}}{{\sqrt x - 2}} - \frac{{2\sqrt x + 1}}{{3 - \sqrt x }}\)
\(M = \frac{{2\sqrt x - 9}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} - \frac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} + \frac{{\left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\)
\(M = \frac{{2\sqrt x - 9}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} - \frac{{x - 9}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} + \frac{{2x - 3\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\)
\(M = \frac{{2\sqrt x - 9 - x + 9 + 2x - 3\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\)
\(M = \frac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\)
\(M = \frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \frac{{\sqrt x + 1}}{{\sqrt x - 3}}\).
Với x ≥ 0; x ≠ 4; x ≠ 9, M = \(\frac{{\sqrt x + 1}}{{\sqrt x - 3}} = 1 + \frac{4}{{\sqrt x - 3}}\).
Để M nguyên thì \(\frac{4}{{\sqrt x - 3}}\) nguyên hay \(\sqrt x - 3\) là Ư(4).
Mà Ư(4) = {1; 4; −1; −4; 2; −2}.
• Với \(\sqrt x - 3\) = 1 suy ra x = 16 (thỏa mãn).
• Với \(\sqrt x - 3\) = −1 suy ra x = 4 (loại).
• Với \(\sqrt x - 3\) = 2 suy ra x = 25 (thỏa mãn).
• Với \(\sqrt x - 3\) = −2 suy ra x = 1 (thỏa mãn).
• Với \(\sqrt x - 3\) = 4 suy ra x = 49 (thỏa mãn).
• Với \(\sqrt x - 3\) = −4 suy ra \(\sqrt x \) = −1 (loại).
Vậy để A nhận giá trị nguyên thì x ∈ {1; 25; 16; 49}.
Lời giải
Hướng dẫn giải
Với x > 0, x ≠ 9, ta có:
\(A = \frac{{\sqrt x + 15}}{{x - 9}} - \frac{x}{{x - 3\sqrt x }} + \frac{{2\sqrt x + 5}}{{\sqrt x + 3}}\)
\(A = \frac{{\left( {\sqrt x + 15} \right)\sqrt x }}{{\sqrt x \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}} - \frac{{x\left( {\sqrt x + 3} \right)}}{{\sqrt x \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} + \frac{{\left( {2\sqrt x + 5} \right)\sqrt x \left( {\sqrt x - 3} \right)}}{{\sqrt x \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\)
\(A = \frac{{x + 15\sqrt x - x\sqrt x - 3x + 2x\sqrt x + 5x - 6x - 15\sqrt x }}{{\sqrt x \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)
\(A = \frac{{x\sqrt x - 3x}}{{\sqrt x \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} = \frac{{x\left( {\sqrt x - 3} \right)}}{{\sqrt x \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} = \frac{{\sqrt x }}{{\sqrt x + 3}}\).
Với x > 0, x ≠ 9 có \(A = \frac{{\sqrt x }}{{\sqrt x + 3}}\) > 0.
Lại có: A = \(1 - \frac{3}{{\sqrt {x + 3} }} < 1\).
Do đó 0 < A < 1.
Vậy không tồn tại giá trị của x để A nhận giá trị là số nguyên.
>>Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.