Cho biểu thức \(A = \frac{{9 - 3\sqrt x }}{{x - 4}}\) và \(B = \frac{{\sqrt x }}{{\sqrt x + 1}} + \frac{{1 - \sqrt x }}{{\sqrt x - 2}} - \frac{{\sqrt x + 4}}{{x - \sqrt x - 2}}\)
với x ≥ 0 và x ≠ 4.
a) Rút gọn biểu thức B.
b) Tìm x ∈ ℝ để biểu thức P = A : B nhận giá trị là một số nguyên âm.
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Với x ≥ 0 và x ≠ 4, ta có:
\(B = \frac{{\sqrt x }}{{\sqrt x + 1}} + \frac{{1 - \sqrt x }}{{\sqrt x - 2}} - \frac{{\sqrt x + 4}}{{x - \sqrt x - 2}}\)
\(B = \frac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}} + \frac{{\left( {\sqrt x + 1} \right)\left( {1 - \sqrt x } \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}} - \frac{{\sqrt x + 4}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}\)
\(B = \frac{{x - 2\sqrt x + 1 - x - \sqrt x - 4}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}\)
\(B = \frac{{ - 3\sqrt x - 3}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}} = \frac{{ - 3\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}} = \frac{{ - 3}}{{\sqrt x - 2}}\).
Ta có: P = A : B = \(\frac{{9 - 3\sqrt x }}{{x - 4}}:\frac{{\left( { - 3} \right)}}{{\sqrt x - 2}} = \frac{{3\left( {3 - \sqrt x } \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}.\frac{{\sqrt x - 2}}{{\left( { - 3} \right)}} = \frac{{\sqrt x - 3}}{{\sqrt x + 2}}\).
Có \(P = \frac{{\sqrt x - 3}}{{\sqrt x + 2}} = 1 - \frac{5}{{\sqrt x + 2}}\).
Do x ≥ 0 suy ra 0 < \(\frac{5}{{\sqrt x + 2}}\) ≤ \(\frac{5}{2}\).
Đêt P nguyên thì \(\frac{5}{{\sqrt x + 2}}\) nhận giá trị nguyên.
Do đó P = 1 hoặc P = 2.
Với P = 1 thì \(\frac{5}{{\sqrt x + 2}} = 1\) hay \(\sqrt x + 2\) = 5 suy ra x = 9 .
Với P = 2 thì \(\frac{5}{{\sqrt x + 2}} = 2\) hay \(\sqrt x + 2 = \frac{5}{2}\) suy ra x = \(\frac{1}{4}\).
Thử lại:
Khi x = 9 thì P = 0 (loại).
Khi x = \(\frac{1}{4}\) thì P = −1 (thỏa mãn).
Vậy x = \(\frac{1}{4}\).
>Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Với x ≥ 0; x ≠ 4, ta có:
\(B = \frac{{\sqrt x - 11}}{{x - \sqrt x - 2}} - \frac{{\sqrt x }}{{\sqrt x + 1}} + \frac{{2\sqrt x - 1}}{{\sqrt x - 2}}\)
\(B = \frac{{\sqrt x - 11}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}} - \frac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}} + \frac{{\left( {2\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}\)
\(B = \frac{{\sqrt x - 11 - x + 2\sqrt x + 2x + \sqrt x - 1}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}\)
\(B = \frac{{x + 4\sqrt x - 12}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}} = \frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 6} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}} = \frac{{\sqrt x + 6}}{{\sqrt x + 1}}\).
Ta có: P = A.B = \(\frac{{\sqrt x + 1}}{{\sqrt x + 2}}.\frac{{\sqrt x + 6}}{{\sqrt x + 1}} = \frac{{\sqrt x + 6}}{{\sqrt x + 2}} = 1 + \frac{4}{{\sqrt x + 2}}\).
Để P nhận giá trị nguyên thì \(\frac{4}{{\sqrt x + 2}}\) nguyên.
Suy ra \(\sqrt x + 2\) là ước của 4.
Nhận thấy \(\sqrt x + 2 \ge 2\) với x ≥ 0; x ≠ 4 nên \(\sqrt x + 2\) = 2 hoặc \(\sqrt x + 2\) = 4.
Suy ra x = 0 (thỏa mãn) hoặc x = 4 (loại).
Vậy x = 0 thì P = A.B nhận giá trị nguyên.
Lời giải
Hướng dẫn giải
Với x > 0, x ≠ 4, ta có:
\(B = \frac{1}{{\sqrt x + 2}} + \frac{{\sqrt x }}{{2 - \sqrt x }} + \frac{{2x - \sqrt x + 2}}{{x - 4}}\)
\(B = \frac{{\sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} - \frac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} + \frac{{2x - \sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)
\(B = \frac{{\sqrt x - 2 - x - 2\sqrt x + 2x - \sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)
\(B = \frac{{x - 2\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x }}{{\sqrt x + 2}}\).
Vậy B = \(\frac{{\sqrt x }}{{\sqrt x + 2}}\) với x > 0, x ≠ 4.
Ta có: P = A.B = \(\frac{{x - 7}}{{\sqrt x }}.\frac{{\sqrt x }}{{\sqrt x + 2}} = \frac{{x - 7}}{{\sqrt x + 2}}\).
Xét P = 0 khi \(\frac{{x - 7}}{{\sqrt x + 2}} = 0\) suy ra x – 7 = 0 (thỏa mãn điều kiện).
Xét P ≠ 0.
TH1: x ∈ ℤ; x ≠ 7; \(\sqrt x \) là số vô tỉ thì P ∉ ℤ (loại).
TH2: x ∈ ℤ; \(\sqrt x \)∈ ℤ.
Ta có: \(P = \frac{{x - 4 - 3}}{{\sqrt x + 2}} = \frac{{x - 4}}{{\sqrt x + 2}} - \frac{3}{{\sqrt x + 2}} = \sqrt x - 2 - \frac{3}{{\sqrt x + 2}}\).
Để P ∈ ℤ thì \(\sqrt x - 2 - \frac{3}{{\sqrt x + 2}}\) ∈ ℤ suy ra \(\frac{3}{{\sqrt x + 2}}\) ∈ ℤ.
Do đó, \(\left( {\sqrt x + 2} \right) \in \)Ư(3).
Mà Ư(3) = {1; 3; −1; −3}.
Do \(\sqrt x + 2\) ≥ 2 nên \(\sqrt x + 2\) = 3 suy ra \(\sqrt x = 1\) suy ra x = 1 (thỏa mãn).
Vậy x ∈ {1; 7} thì P có giá trị nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.