Cho biểu thức \(A = \frac{{x - 7}}{{\sqrt x }}\) và \(B = \frac{1}{{\sqrt x + 2}} + \frac{{\sqrt x }}{{2 - \sqrt x }} + \frac{{2x - \sqrt x + 2}}{{x - 4}}\)
với x > 0, x ≠ 4. Tìm tất cả các giá trị nguyên của x để biểu thức P = A.B nhận giá trị nguyên.
Quảng cáo
Trả lời:
Hướng dẫn giải
Với x > 0, x ≠ 4, ta có:
\(B = \frac{1}{{\sqrt x + 2}} + \frac{{\sqrt x }}{{2 - \sqrt x }} + \frac{{2x - \sqrt x + 2}}{{x - 4}}\)
\(B = \frac{{\sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} - \frac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} + \frac{{2x - \sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)
\(B = \frac{{\sqrt x - 2 - x - 2\sqrt x + 2x - \sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)
\(B = \frac{{x - 2\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x }}{{\sqrt x + 2}}\).
Vậy B = \(\frac{{\sqrt x }}{{\sqrt x + 2}}\) với x > 0, x ≠ 4.
Ta có: P = A.B = \(\frac{{x - 7}}{{\sqrt x }}.\frac{{\sqrt x }}{{\sqrt x + 2}} = \frac{{x - 7}}{{\sqrt x + 2}}\).
Xét P = 0 khi \(\frac{{x - 7}}{{\sqrt x + 2}} = 0\) suy ra x – 7 = 0 (thỏa mãn điều kiện).
Xét P ≠ 0.
TH1: x ∈ ℤ; x ≠ 7; \(\sqrt x \) là số vô tỉ thì P ∉ ℤ (loại).
TH2: x ∈ ℤ; \(\sqrt x \)∈ ℤ.
Ta có: \(P = \frac{{x - 4 - 3}}{{\sqrt x + 2}} = \frac{{x - 4}}{{\sqrt x + 2}} - \frac{3}{{\sqrt x + 2}} = \sqrt x - 2 - \frac{3}{{\sqrt x + 2}}\).
Để P ∈ ℤ thì \(\sqrt x - 2 - \frac{3}{{\sqrt x + 2}}\) ∈ ℤ suy ra \(\frac{3}{{\sqrt x + 2}}\) ∈ ℤ.
Do đó, \(\left( {\sqrt x + 2} \right) \in \)Ư(3).
Mà Ư(3) = {1; 3; −1; −3}.
Do \(\sqrt x + 2\) ≥ 2 nên \(\sqrt x + 2\) = 3 suy ra \(\sqrt x = 1\) suy ra x = 1 (thỏa mãn).
Vậy x ∈ {1; 7} thì P có giá trị nguyên.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Với x ≥ 0; x ≠ 4, ta có:
\(B = \frac{{\sqrt x - 11}}{{x - \sqrt x - 2}} - \frac{{\sqrt x }}{{\sqrt x + 1}} + \frac{{2\sqrt x - 1}}{{\sqrt x - 2}}\)
\(B = \frac{{\sqrt x - 11}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}} - \frac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}} + \frac{{\left( {2\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}\)
\(B = \frac{{\sqrt x - 11 - x + 2\sqrt x + 2x + \sqrt x - 1}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}\)
\(B = \frac{{x + 4\sqrt x - 12}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}} = \frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 6} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}} = \frac{{\sqrt x + 6}}{{\sqrt x + 1}}\).
Ta có: P = A.B = \(\frac{{\sqrt x + 1}}{{\sqrt x + 2}}.\frac{{\sqrt x + 6}}{{\sqrt x + 1}} = \frac{{\sqrt x + 6}}{{\sqrt x + 2}} = 1 + \frac{4}{{\sqrt x + 2}}\).
Để P nhận giá trị nguyên thì \(\frac{4}{{\sqrt x + 2}}\) nguyên.
Suy ra \(\sqrt x + 2\) là ước của 4.
Nhận thấy \(\sqrt x + 2 \ge 2\) với x ≥ 0; x ≠ 4 nên \(\sqrt x + 2\) = 2 hoặc \(\sqrt x + 2\) = 4.
Suy ra x = 0 (thỏa mãn) hoặc x = 4 (loại).
Vậy x = 0 thì P = A.B nhận giá trị nguyên.
Lời giải
a) Với x > 0, x ≠ 4, ta có:
\(A = \left( {\frac{2}{{\sqrt x - 2}} + \frac{3}{{2\sqrt x + 1}} - \frac{{5\sqrt x - 7}}{{2x - 3\sqrt x - 2}}} \right):\frac{{2\sqrt x + 3}}{{5x - 10\sqrt x }}\)
\(A = \left[ {\frac{{2\left( {2\sqrt x + 1} \right)}}{{\left( {\sqrt x - 2} \right)\left( {2\sqrt x + 1} \right)}} + \frac{{3\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {2\sqrt x + 1} \right)}} - \frac{{5\sqrt x - 7}}{{\left( {\sqrt x - 2} \right)\left( {2\sqrt x + 1} \right)}}} \right].\frac{{5x - 10\sqrt x }}{{2\sqrt x + 3}}\)
\(A = \left[ {\frac{{4\sqrt x + 2 + 3\sqrt x - 6 - 5\sqrt x + 7}}{{\left( {\sqrt x - 2} \right)\left( {2\sqrt x + 1} \right)}}} \right].\frac{{5\sqrt x \left( {\sqrt x - 2} \right)}}{{2\sqrt x + 3}}\)
\(A = \left[ {\frac{{2\sqrt x + 3}}{{\left( {\sqrt x - 2} \right)\left( {2\sqrt x + 1} \right)}}} \right].\frac{{5\sqrt x \left( {\sqrt x - 2} \right)}}{{2\sqrt x + 3}}\)
\(A = \frac{{5\sqrt x }}{{2\sqrt x + 1}}\).
b) Ta có: \(\sqrt x \) > 0 với mọi x > 0, x ≠ 4 nên \(A = \frac{{5\sqrt x }}{{2\sqrt x + 1}}\) > 0 với x > 0, x ≠ 4.
Ta có: \(A = \frac{{5\sqrt x }}{{2\sqrt x + 1}} = \frac{5}{2} - \frac{5}{{2\left( {2\sqrt x + 1} \right)}} < \frac{5}{2}\) với x > 0, x ≠ 4.
Do đó, 0 < A < \(\frac{5}{2}\).
Để A nhận giá trị nguyên thì A = 1 hoặc A = 2.
Với A = 1, suy ra \(\frac{{5\sqrt x }}{{2\sqrt x + 1}} = 1\) hay \(5\sqrt x = 2\sqrt x + 1\) suy ra \(\sqrt x = \frac{1}{3}\) khi x = \(\frac{1}{9}\) (thỏa mãn).
Với A = 2, suy ra \(\frac{{5\sqrt x }}{{2\sqrt x + 1}} = 2\) hay \(5\sqrt x = 4\sqrt x + 2\) suy ra \(\sqrt x = 2\) khi x = 4 (loại).
Vậy với x = \(\frac{1}{9}\) thì A nhận giá trị nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.