Câu hỏi:
09/01/2025 20Cho biểu thức \(A = \frac{{\sqrt x + 4}}{{\sqrt x + 2}}\) và \(B = \left( {\frac{{\sqrt x }}{{\sqrt x + 4}} + \frac{4}{{\sqrt x - 4}}} \right):\frac{{x + 16}}{{\sqrt x + 2}}\)
(x ≥ 0, x ≠ 16). Hãy tìm các giá trị nguyên của x để biểu thức M = B(A – 1) là số nguyên.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Với x ≥ 0, x ≠ 16, ta có:
\(B = \left( {\frac{{\sqrt x }}{{\sqrt x + 4}} + \frac{4}{{\sqrt x - 4}}} \right):\frac{{x + 16}}{{\sqrt x + 2}}\)
\(B = \left[ {\frac{{\sqrt x \left( {\sqrt x - 4} \right)}}{{\left( {\sqrt x + 4} \right)\left( {\sqrt x - 4} \right)}} + \frac{{4\left( {\sqrt x + 4} \right)}}{{\left( {\sqrt x + 4} \right)\left( {\sqrt x - 4} \right)}}} \right].\frac{{\sqrt x + 2}}{{x + 16}}\)
\(B = \frac{{x - 4\sqrt x + 4\sqrt x + 16}}{{\left( {\sqrt x + 4} \right)\left( {\sqrt x - 4} \right)}}.\frac{{\left( {\sqrt x + 2} \right)}}{{\left( {x + 16} \right)}}\)
\(B = \frac{{x + 16}}{{\left( {\sqrt x + 4} \right)\left( {\sqrt x - 4} \right)}}.\frac{{\left( {\sqrt x + 2} \right)}}{{\left( {x + 16} \right)}} = \frac{{\sqrt x + 2}}{{x - 16}}\).
Ta có: M = B(A – 1)
= \(\frac{{\sqrt x + 2}}{{x - 16}}.\left[ {\frac{{\sqrt x + 4}}{{\sqrt x + 2}} - 1} \right]\)
= \(\frac{{\sqrt x + 2}}{{x - 16}}.\frac{{\sqrt x + 4 - \sqrt x - 2}}{{\sqrt x + 2}}\)
= \(\frac{{\sqrt x + 2}}{{x - 16}}.\frac{2}{{\sqrt x + 2}} = \frac{2}{{x - 16}}\).
Để M = B(A – 1) nguyên, x nguyên thì x – 16 là ước của 2.
Mà Ư(2) = {−1; 1; 2; −2}.
• Với x – 16 = −1 thì x = 15 (thỏa mãn).
• Với x – 16 = 1 thì x = 17 (thỏa mãn).
• Với x – 16 = −2 thì x = 14 (thỏa mãn).
• Với x – 16 = 2 thì x = 18 (thỏa mãn).
Kết hợp điều kiện để B(A – 1) nguyên thì x ∈ {14; 15; 17; 18}.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biểu thức \(A = \frac{{x - 7}}{{\sqrt x }}\) và \(B = \frac{1}{{\sqrt x + 2}} + \frac{{\sqrt x }}{{2 - \sqrt x }} + \frac{{2x - \sqrt x + 2}}{{x - 4}}\)
với x > 0, x ≠ 4. Tìm tất cả các giá trị nguyên của x để biểu thức P = A.B nhận giá trị nguyên.
Câu 2:
Cho hai biểu thức \(A = \frac{{\sqrt x + 1}}{{\sqrt x + 2}}\) và \(B = \frac{{\sqrt x - 11}}{{x - \sqrt x - 2}} - \frac{{\sqrt x }}{{\sqrt x + 1}} + \frac{{2\sqrt x - 1}}{{\sqrt x - 2}}\) với x ≥ 0; x ≠ 4. Tìm x nguyên để A.B có giá trị nguyên.
Câu 3:
Cho biểu thức \(A = \left( {\frac{2}{{\sqrt x - 2}} + \frac{3}{{2\sqrt x + 1}} - \frac{{5\sqrt x - 7}}{{2x - 3\sqrt x - 2}}} \right):\frac{{2\sqrt x + 3}}{{5x - 10\sqrt x }}\) (x > 0, x ≠ 4).
a) Rút gọn biểu thức.
b) Tìm x sao cho A nhận giá trị là một số nguyên.
Câu 4:
Cho biểu thức \(M = \frac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \frac{{\sqrt x + 3}}{{\sqrt x - 2}} - \frac{{2\sqrt x + 1}}{{3 - \sqrt x }}\) với x ≥ 0; x ≠ 4;
x ≠ 9.
a) Rút gọn A.
b) Tìm x nguyên để A có giá trị nguyên.
Câu 5:
Cho biểu thức \(A = \frac{{9 - 3\sqrt x }}{{x - 4}}\) và \(B = \frac{{\sqrt x }}{{\sqrt x + 1}} + \frac{{1 - \sqrt x }}{{\sqrt x - 2}} - \frac{{\sqrt x + 4}}{{x - \sqrt x - 2}}\)
với x ≥ 0 và x ≠ 4.
a) Rút gọn biểu thức B.
b) Tìm x ∈ ℝ để biểu thức P = A : B nhận giá trị là một số nguyên âm.
Câu 6:
Cho biểu thức \(A = \frac{{\sqrt x }}{{x - 2\sqrt x }} + \frac{3}{{\sqrt x }}\) và \(B = \frac{2}{{\sqrt x - 2}}\) với x > 0, x ≠ 4 và
x ≠ \(\frac{9}{4}\). Tính giá trị nguyên của x để P = \(\frac{B}{A}\) nhận giá trị nguyên.
Câu 7:
Cho biểu thức \(A = \frac{{x - 3}}{{\sqrt x + 1}}\) và \(B = \frac{{x - \sqrt x - 7}}{{x + \sqrt x - 6}} + \frac{{\sqrt x + 2}}{{\sqrt x + 3}} + \frac{{\sqrt x - 3}}{{2 - \sqrt x }}\)
với x ≥ 0; x ≠ 4.
a) Rút gọn B.
b) Tìm giá trị nguyên của x để M = A.B nhận giá trị nguyên.
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!