12 bài tập Rút gọn biểu thức có chứa căn thức bậc hai có lời giải
40 người thi tuần này 4.6 178 lượt thi 12 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
30 bài tập Toán 9 Cánh diều Ôn tập cuối chương 6 có đáp án
46 câu Trắc nghiệm Toán 9 Cánh diều Ôn tập cuối chương 6 có đáp án
13 bài tập Xác suất của biến cố (có lời giải)
5 bài tập Kết quả thuận lợi cho một biến cố (có lời giải)
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Với x > 0, x ≠ 4, ta có:
\(A = \left( {\frac{1}{{\sqrt x - 2}} + \frac{1}{{\sqrt x + 2}}} \right).\frac{{x - 4}}{{\sqrt x }}\)
\(A = \left[ {\frac{{\sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} + \frac{{\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}} \right].\frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}{{\sqrt x }}\)
\(A = \frac{{\left( {\sqrt x + 2 + \sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}.\frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}{{\sqrt x }}\)
\(A = \frac{{2\sqrt x }}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}.\frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}{{\sqrt x }} = 2\).
Vậy với x > 0, x ≠ 4 thì A = 2.
Lời giải
Hướng dẫn giải
Với a ≥ 0, a ≠ 1, ta có:
\(A = \left( {\frac{{\sqrt a - 1}}{{\sqrt a + 1}} + \frac{{\sqrt a + 1}}{{\sqrt a - 1}}} \right).\left( {1 - \frac{2}{{a + 1}}} \right)\)
\(A = \left[ {\frac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}} + \frac{{{{\left( {\sqrt a + 1} \right)}^2}}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right].\frac{{a - 1}}{{a + 1}}\)
\(A = \frac{{\left( {a - 2\sqrt a + 1 + a + 2\sqrt a + 1} \right)}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}.\frac{{\left( {a - 1} \right)}}{{\left( {a + 1} \right)}}\)
\(A = \frac{{2\left( {a + 1} \right)}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}.\frac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}{{\left( {a + 1} \right)}} = 2\).
Vậy với a ≥ 0, a ≠ 1 thì a = 2.
Lời giải
Với a > 0, a ≠ 4, ta có:
\(A = \left( {\frac{{\sqrt a - 2}}{{\sqrt a + 2}} - \frac{{\sqrt a + 2}}{{\sqrt a - 2}}} \right).\left( {\sqrt a - \frac{2}{{\sqrt a }}} \right)\)
\(A = \left[ {\frac{{{{\left( {\sqrt a - 2} \right)}^2}}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}} - \frac{{{{\left( {\sqrt a + 2} \right)}^2}}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}} \right].\left( {\frac{{a - 2}}{{\sqrt a }}} \right)\)
\(A = \frac{{{{\left( {\sqrt a - 2} \right)}^2} - {{\left( {\sqrt a + 2} \right)}^2}}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}.\left( {\frac{{a - 2}}{{\sqrt a }}} \right)\)
\(A = \frac{{\left( {\sqrt a - 2 - \sqrt a - 2} \right)\left( {\sqrt a - 2 + \sqrt a + 2} \right)}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}.\left( {\frac{{a - 2}}{{\sqrt a }}} \right)\)
\(A = \frac{{ - 4.2\sqrt a }}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}.\left( {\frac{{a - 2}}{{\sqrt a }}} \right)\)
\(A = \frac{{ - 8\left( {a - 2} \right)}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}\).
Lời giải
Hướng dẫn giải
Với x ≥ 0, x ≠ 4, ta có:
\(A = \frac{{5\sqrt x - 3}}{{\sqrt x - 2}} + \frac{{3\sqrt x + 1}}{{\sqrt x + 2}} - \frac{{x + 2\sqrt x - 8}}{{x - 4}}\)
\(A = \frac{{\left( {5\sqrt x - 3} \right)\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} + \frac{{\left( {3\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} - \frac{{x + 2\sqrt x - 8}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\(A = \frac{{5x + 7\sqrt x - 6}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} + \frac{{3x - 5\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} - \frac{{x + 2\sqrt x - 8}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\(A = \frac{{5x + 7\sqrt x - 6 + 3x - 5\sqrt x - 2 - x - 2\sqrt x + 8}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\(A = \frac{{7x}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\).
Lời giải
Hướng dẫn giải
Với x ≥ 0, x ≠ 16, ta có:
\(A = \frac{{5 - 5\sqrt x }}{{x - 16}} - \frac{2}{{4 - \sqrt x }} + \frac{3}{{\sqrt x + 4}}\)
\(A = \frac{{5 - 5\sqrt x }}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}} + \frac{{2\left( {\sqrt x + 4} \right)}}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}} + \frac{{3\left( {\sqrt x - 4} \right)}}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}}\)
\(A = \frac{{5 - 5\sqrt x + 2\sqrt x + 8 + 3\sqrt x - 12}}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}}\)
\(A = \frac{1}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}} = \frac{1}{{x - 16}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.